

H. DELSHAD M.D Endocrinologist

Research Institute for Endocrine Sciences

Thyroid Hormone

- Optimal mental & physical development
- Regulation of body metabolism
- Generation & utilization of body energy

Iodine

- Iodine is a chemical and essential trace element for the human
- Total quantity present in body is 15-20 mg, mostly in thyroid gland(60%)
- Iodine contributes 65% of T_4 and 59% of T_3 molecular weight.

How Much Do We Need?

Age group	Daily requirement	Tolerable upper level
Preschool children	90 μg/day	200
Schoolchildren(6-12 y)	120 μg/day	300-450
Adult (>12 y)	150 μg/day	600-1100
Pregnant & Lactating women	250-300 μg/day	600-1100

What happens if we don't get enough iodine?

The Spectrum Of IDD

Fetus	Abortions	
	Stillbirths	
	Congenital anomalies	
	Increased perinatal mortality	
	Neurologic cretinism	
	Psychomotor defects	
Neonate	Neonatal goiter	
	Neonatal hypothyroidims	
Child & adolescent	Goitrous juvenile hypothyroidism	
	Impaired mental function	
	Retarded physical development	
Adult	Goiter with its complications	
	Hypothyroidism	
	Impaired mental function	

Severe Iodine Deficiency is Associated with Adverse Obstetric Outcomes

Fetus

- Congenital anomalies
- Decreased intelligence
- Neurological cretinism spasticity, deaf mutism, mental deficiency

Neonate

- Neonatal goiter
- Neonatal hypothyroidism
- Endemic mental retardation
- Increased susceptibility of the thyroid gland to nuclear radiation

Pregnant Women

- Prematurity
- spontaneous abortion
- Still birth
- Increased infant mortality

lodine nutrition in the general population and in pregnant women in 2021(IGN)

 General Population: (194 Country)

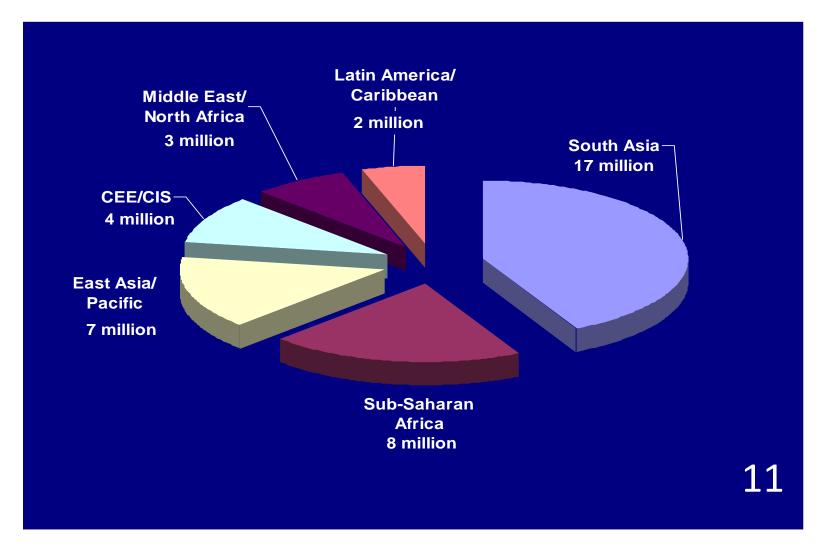
Adequate: 156

Insufficient: 26

Excessive: 12

Pregnant Women: (69 Country)

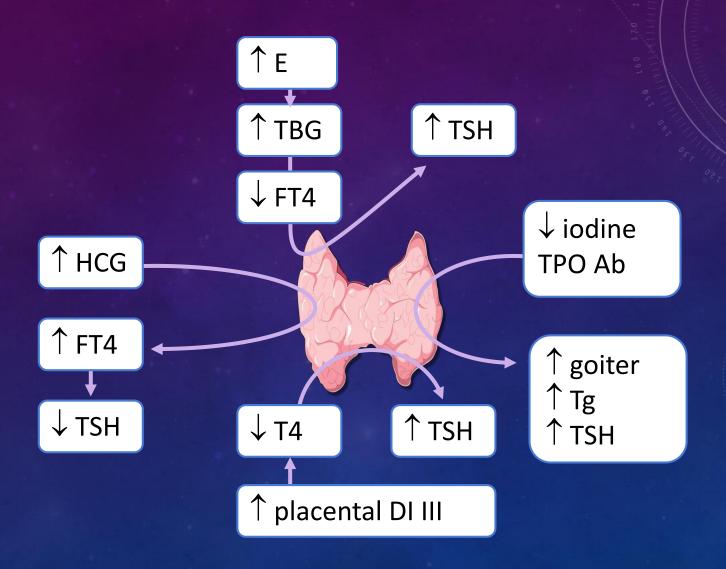
Adequate: 23


More than

adequate: 7

Insufficient: 39

41 million newborns still unprotected:


against brain damage due to lack of iodine during pregnancy

Pregnancy

Relative Iodine Deficiency

Factors For Thyroid Stimulation During Pregnancy

13

Increased GFR

Decreased renal tubular reabsorption

Active transport to feto-placental unit

Increased thyroid iodine uptake from the blood (3 fold)

Increase iodine excretion in urine (2 fold)

Fall of plasma iodine

Increase maternal iodine requirement

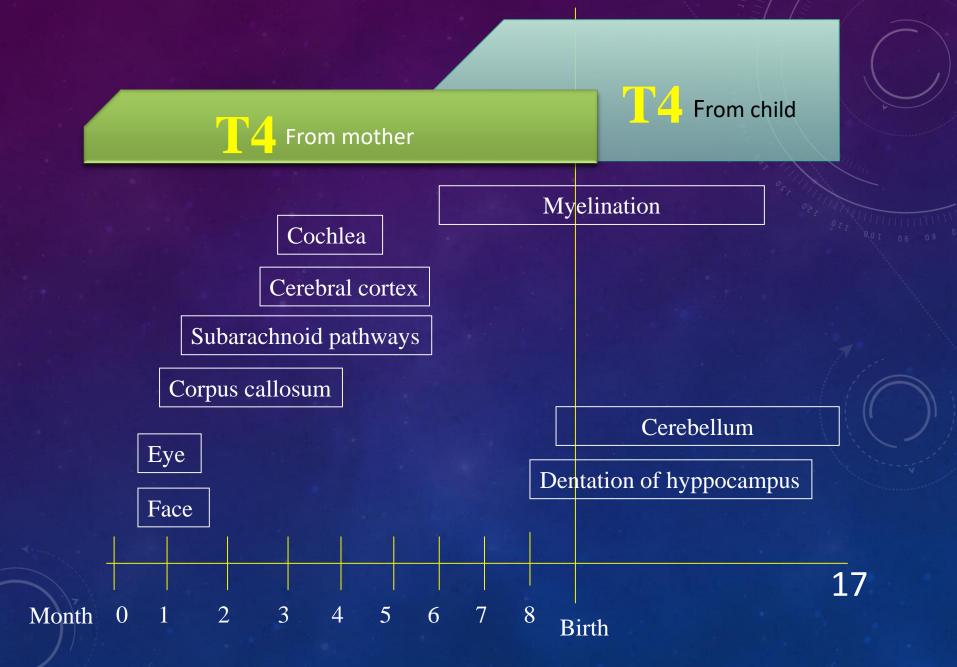
Pregnancy:

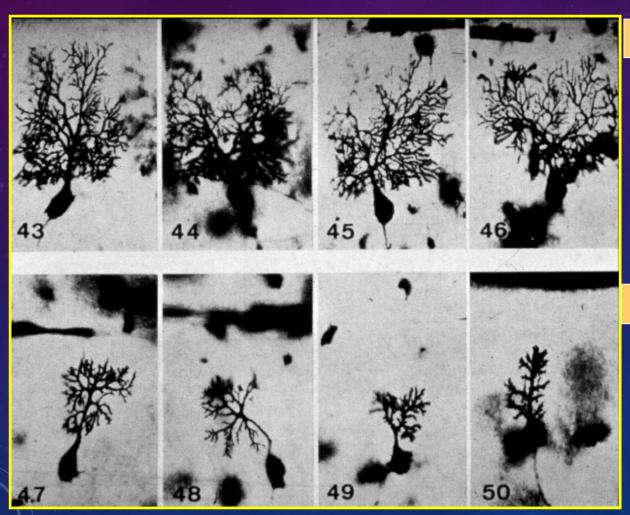
Relative Iodine Deficiency

14

During pregnancy	μg /day
Basal	150
40-50 % increased T4 requirements	50 - 100
Transfer of T4 and I from mother to fetus	50
Increased renal clearance of	?
Total	250 - 300
During lactation	
Basal	150
0.5-1.1 L milk/day x 150-180 μg /L	75 - 200
Total	225 - 350

Pregnancy & Breastfeeding


Mothers are the sole source of iodine for their babies


The Fetal Thyroid

- Begins concentrating iodine at 10-12 weeks
- Controlled by pituitary TSH by approximately 20 weeks
- Maternal T4 essential for first 24 weeks of gestation
- Foetal T4 starts at 24 weeks

Developing brain needs normal level of circulating T4

The network of connections are less dense in Iodine Deficient Brain

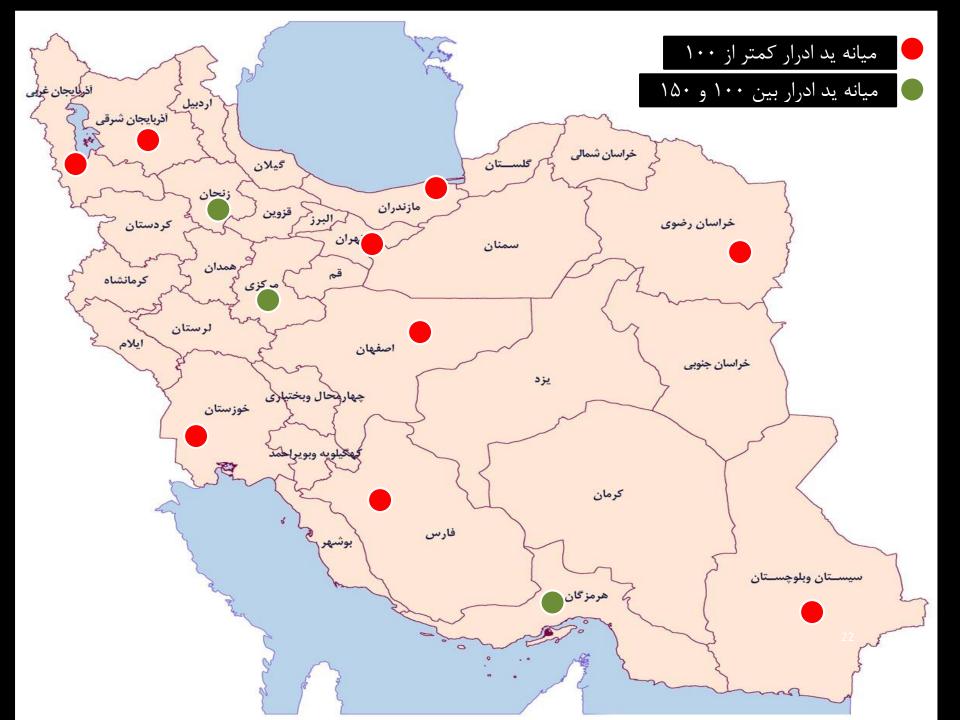
Iodine Sufficient Brain

Iodine Deficient Brain

Epidemiologic criteria for assessing iodine nutrition based on median UIC of pregnant women

Median Urinary Iodine (μg/L)	Iodine Intake
<150	Insufficient
150 - 249	Adequate
250 - 499	Above Requirement
≥500	Excessive

lodine nutrition in the general population in Iran in 2014 (The 5th National Survey)


General Population: SAC=18,000
 Median UIC: 161 μg/L

98% of households consumed iodized salt

83% of the household salts contained ≥20 ppm.

The 1st and the 2nd Study on Iodine Nutrition of Pregnant Women in Iran Pregnant Women in Iran

Parameter	The 1 ST Survey 1394	The 2 nd Survey 1396
Median UIC	87 μg/L	188 μg/L
Mean T4	11.2 μg/dl	10.8 μg/dl
Mean TSH	2.2 mIU/L	2.5 mIU/L
Isolated hypothyroxinemia	11%	0.6%

Conclusion

- Consumption of salt fortified with iodine may not be enough to meet the dietary needs of pregnant and lactating women in Iran, an area of iodine sufficiency.
- They should take iodine supplement to make up for the deficiency.

When is Iodine Supplementation

required during

Pregnancy and Lactation?

Iodine Supplementation And Pregnancy

Iodized salt consumption started at pregnancy:

- **❖38%** thyroid failure, hypothyroxinemia with normal serum TSH
- **❖**MUI = 63 μg/L

• Iodized salt consumption begun 2yr prior to pregnancy:

- **♦6.4%** thyroid failure
- **♦**MUI= 115 μg/L

Lesson: By the time women become pregnant, it may be too late for iodized salt to be effective

Iodine Supplementation in Pregnancy

Before conception & First trimester:

Folic Acid + Iodine 150 µg/day

Second and third trimesters:

Multivitamins + Iodine 150 μg/day

Tab. lodofolic

150 μg of Iodine 500 μg of folic acid

One Tab. per day:

Start 3 months before planning a pregnancy,

Tab. Ivita

17 minerals and essential elements

Folic acid= 600 µg

Iodine = $150 \mu g$

One Tab. per day:

Start from second trimester of pregnancy, Continue through lactation.

The impact of iodine deficiency during pregnancy

lodine Deficiency In Pregnancy

Severe iodine deficiency (ID) during gestation is associated with neurocognitive sequel.

Results from observational studies, have indicated that even mild to moderate iodine deficiency (ID) in pregnancy might negatively affect child neurodevelopment.

Evidences:

Bath SC, et al. Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon Longitudinal Study of Parents and Children (ALSPAC).

Lancet 2013 382:331–337

- Urinary iodine concentration measured in stored samples from 1040 first-trimester pregnant women.
- Intelligence quotient (IQ) measured in the offspring at age 8 years.
- •Children of women with UIC < 150 μ g/L were more likely to have scores in the lowest quartile for verbal IQ , reading accuracy and reading comprehension than were those of mothers with UIC > 150 μ g/L.

Hynes KL. et al. Mild iodine deficiency during pregnancy is associated with reduced educational outcomes in the offspring: 9-year follow-up of the gestational iodine cohort.

J Clin Endocrinol Metab. 2013; 98(5):1954-62.

Hynes KL, et al. Reduced educational outcomes persist into adolescence following mild iodine deficiency in utero, despite adequacy in childhood: 15-Year follow-up of the Gestational Iodine Cohort investigating auditory processing speed and working memory.

Nutrients 2017

Abel MH, et al. Suboptimal maternal iodine intake is associated with impaired child neurodevelopment at 3 years of age in the Norwegian Mother and Child Cohort Study.

J Nutr 2017;147:1314–1324

Abel MH, et al. Maternal iodine intake and offspring attention-deficit/hyperactivity disorder: Results from a large prospective cohort study.

Nutrients 2017

Mario Murcia, et al. J Epidemiol Community Health 2018;72:216–222

The INMA Mother and Child Cohort Study (Infancy Medio Ambient)

A prospective cohort study in four Spanish regions(iodine-sufficient or mildly iodine-deficient) with recruitment of pregnant women between 2003 and 2008 and follow-up of their children up to 4–5 years

Cognitive and motor function was assessed in 1803 children

They found an association between low maternal urinary iodine and lower cognitive scores in childhood.

The impact of iodine supplementation

Evidences

Taylor PN, Okosieme OE, Dayan CM, Lazarus JH Eur J Endocr (2014)

Impact of iodine supplementation in mild-to-moderate iodine deficiency: systematic review and meta-analysis.

MUI 36-109µg/L) in European countries.

Results:

- After iodine supplementation of 150 ~300 μg/d
 - Maternal UI concentration increased
 - Maternal thyroid volume and Tg decreased
 - Neonatal thyroid volume and Tg decreased
 - No effect on neonatal FT4

- Cognitive evaluation of offspring at 6 ~ 18 month
- Increase psychomotor development index (PDI) significantly
- Increase IQ markedly when iodine supplement as early as
 4week gestation.

Six controlled trial studies in several moderately iodine-deficient European regions have also assessed the effects of iodine supplementation during pregnancy and they report that:

Neonatal psychological and neurocognitive measures improved in supplemented mothers, compared with those born to non supplemented ones.

- 1-Velasco I, The Journal of Clinical Endocrinology & Metabolism. 2009;94(9):3234-41.
- 2- Antonangeli L. European Journal of Endocrinology. 2002;147(1):29-34.
- 3-Glinoer D, The Journal of Clinical Endocrinology & Metabolism. 1995;80(1):25-69.
- 4- Nøhr SB, The Journal of Clinical Endocrinology & Metabolism. 2000;85(2):623-7.
- 5- Berbel P, Thyroid 2009;19:511–9.
- 6-Romano R, American Journal of Obstetrics & Gynecology. 1991;164(2):482-5.

Home messages

- lodine supplementation is mandatory in all pregnant and lactating women residing in iodine deficient regions.
- Consider iodine supplementation of pregnant and lactating women even in areas of iodine sufficiency
- Maintain adequate iodine nutrition in mothers

39

Home messages

- ATA recommends supplementation with 150 mcg of iodine daily during pregnancy and lactation.
- This recommendation has been endorsed by WHO,
 UNICEF and Iodine Global Network (IGN).
- The tolerable upper intake amount of iodine for pregnant women:
 - -The WHO: 500 mcg daily
 - -The National Academy of Medicine: 1100 mcg daily

