ایمونوپاتولوژی کووید-۱۹ (التهاب شدید) دکتر آرش پورغلامی نژاد متخصص ایمونولوژی عضو هیئت علمی دانشگاه علوم پزشکی گیلان دانشکده پزشکی – گروه ایمونولوژی ## مرگ و میر جهانی به دلایل عفونتها - قرن پنجم قبل از میلاد آتن - ۶۲۷–۶۲۸ میلادی: طاعون در زمان شاهنشاهی ساسانیان - سده ۱۳۰۰ میلادی: طاعون سیاه تا ۲۰۰ میلیون نفر مرگ مردم ارواسیا (۱/۳ ایرانیان کشته شدند) - ۲۵۰ سال پیش-دوران کریمخانزند (۱۱۵۱) در ایران همه گیری طاعون- ۲ میلیون مرگ - ۱۸۷۰ (زمان ناصرالدین شاه قاجار): قحطی ۱ بزرگ ایران: مرگ ۱/۱۰ جمعیت ایران از وبا و گرسنگی - ۱۹۱۸ (زمان احمدشاه قاجار): أنفوأنزای اسپانیایی ۵۰ میلیون مرگ (قحطی ۲ بزرگ ایران: تا ۵ میلیون مرگ ایرانی) - ۱۹۵۸: أنفوأنزاي أسيايي ۲ ميليون مرگ - ۱۹۶۸: أنفلوأنزاي هنگ كنگي ١ ميليون مرگ - قرن بیستم: ۵۰۰–۳۰۰ میلیون مرگ بواسطه آبله! ### ۲+۱۹: کووید-۱۹ تا بحال بیش از ۴ میلیون مرگ # Covid-19 Was America's Third Leading Cause Of Death In 2020 Number of deaths for all leading causes of death in the U.S. in 2020 Source: Centers for Disease Control and Prevention Table 2. Epidemiological comparison of respiratory viral infection [70-73]. | Disease | Disease-Causing
Pathogen | R _O
Basic Reproductive
Number | CFR
Case Fatality
Rate | Incubation
Time | Hospitalization
Rate | Community
Attack Rate | Annual Infected
Global | |----------|-----------------------------|--|------------------------------|--------------------|-------------------------|--------------------------|---------------------------| | SARS | SARS-CoV | 3 | 9.6 – 11% | 2 - 7 days | Most cases | 10-60% | 8098 (in 2003) | | MERS | MERS-CoV | 0.3-0.8 | 34.4% | 6 days | Most cases | 4-13% | 420 | | Flu | Influenza virus | 1.3 | 0.05-0.1% | 1 - 4 days | 2% | 10-20% | ~1 billion | | COVID-19 | SARS-CoV-2 | 2.0-2.5 | ~3.4% | 4 – 14 days | ~19% | 30 – 40% | N/A ongoing | ### **Animal Resource of SARS** Figure 1. Animal origins of human coronaviruses (Created with BioRender.com, accessed on 1 August 2020). ### Spike (S) Protein & ACE2 Figure 5. The most minor and major symptoms of COVID-19 (Created with BioRender.com, accessed on 15 March 2021) **Fig. 1.** The relationship between age-dependent changes in immune responses with the severity of COVID-19 disease. Differences in the immune system of children and adults may be the reasons for clinical differences in the severity of COVID-19. During aging, immune responses undergo changes that lead to more severe disease, some of which are include: a) depletion of well-ordinated innate immunity and regulative cytokines, b) diminished ability of the innate immune cells to recognize PAMPs, followed by strong activation of PRRs, influx of pathogenic immune cells and excessive release of proinflammatory cytokines for compensation, c) reduction ratio of naïve lymphocyte/memory lymphocyte, d) induce of negative regulation and the predominance of Th2 to Th1 responses, e) decrement of circulating plasma cells, f) increase of regulatory T cells (CD4+ CD25+ FOXP3+) function, and g) decrease of CTLs activity and diminish of CTLmediated immunity. PAMP: Pathogen associated molecular pattern; PRR: Pathogen recognition receptor; Th: T helper; CTL: Cytotoxic T lymphocyte. The role of dysregulated immune responses in COVID-19 pathogenesis ### **Adults & Children COVID-19** Fig. 2. The difference in immune responses in the lungs of children and adults to SARS-CoV-2 is the reason for the different clinical manifestations. In children, SARS—COV-2 infection may be quickly eradicated due to having less mature ACE2 receptors and rapid activation of immunocompetent immune cells (right side). In adults, the negative regulation of the immune response in the respiratory tract, late changes in the nature of the immune responses, decrease in population of immunocompetent cells, increase of ACE2 expression, ACE2 shedding and sACE2 production, all can lead to an uncontrolled immune response, widespread ineffective inflammation, immune dysregulation, cytokine storm and ARDS (left side). ACE2: Angiotensin—Converting enzyme 2; SARS—COV2: severe acute respiratory syndrome coronavirus 2; ARDS: Acute respiratory distress syndrome. ### **COVID-19-associated Hyper-inflammation** ### CYTOKINE STORM & ARDS Figure 6. A cytokine storm in the lungs due to COVID-19 disease: (1) infection, (2) Cytokine production, (3) Creating a cycle of inflammation in lung cells, (4) Fibrin formation and (5) Filling of the lung cavities (Reprinted from "Cytokine Storm", by BioRender.com, accessed on 3 July 2020) [38]. #### Clinical implications of SARS-CoV-2-induced immunopathology ### **ACE2 Expression in Most Organs** #### Figure 5. ACE2 Expression in Organs and Systems Most Frequently Implicated in COVID-19 Complications The gastrointestinal tract, kidneys, and testis have the highest ACE2 expressions. In some organs, different cell types have remarkably distinct expressions; e.g., in the lungs, alveolar epithelial cells have higher ACE2 expression levels than bronchial epithelial cells; in the liver, ACE2 is not expressed in hepatocytes, Kupffer cells, or endothelial cells but is detected in cholangiocytes, which can explain liver injury to some extent. Furthermore, ACE2 expression is enriched on enterocytes of the small intestine compared to the colon. ACE2, angiotensin-converting enzyme 2; BNP, B-type natriuretic peptide; CRP, C-reactive protein; IL, interleukin; N/L, neutrophil-to-lymphocyte ratio; PT, prothrombin time; aPTT, activated partial thromboplastin time. of similarities between different virus replication mechanisms, some antivirals can be repurposed against various viral infections. Currently, most of the available ### Multi-Organ Failure due to COVID-19 # **Chronic Comorbidities Among 3335 Deceased COVID-19 Patients in Italy** Fig. 1. Chronic comorbidities among 3335 deceased COVID-19 patients in Italy as of June 4th, 2020. (A) Comorbidities by gender. (B) Proportion of patients with 0, 1, 2, or at least 3 comorbidities: 4.1%, 14.8%, 21.5%, and 59.7%, respectively. HTN, hypertension; DM2, diabetes mellitus type 2; IHD, ischemic heart disease; AF, atrial fibrillation; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; HF, heart failure. #### COVID-19 and cardiovascular diseases Francesca Mai (MD)¹, Rita Del Pinto (MD, PhD)¹, Claudio Ferri (MD)* # Mechanisms of Myocardial Injury in COVID-19 patients # Mechanisms of *Endothelial Dysfunction* in COVID-19 Endothelial dysfunction in COVID-19: Current findings and therapeutic implications # Immune Response to SARS-CoV-2 #### NATURE REVIEWS | IMMUNOLOGY ### Not just antibodies: B cells and T cells mediate immunity to COVID-19 Rebecca J. Cox¹ \simeq and Karl A. Brokstad² Fig. 1 | **T cells and B cells in immunity to SARS-CoV-2. a** | Infection with SARS-CoV-2 leads to activation of innate immunity and dendritic cells (DCs), which will drive the induction of virus-specific T cell and B cell responses. Little is currently known concerning the memory response to SARS-CoV-2, but this will be important for developing an effective vaccine. **b** | A predicted time-course of adaptive immunity to SARS-CoV-2. CTL, cytotoxic T lymphocyte; T_{FH} , T follicular helper cell; T_{FH} , T helper cell; T_{FH} , regulatory T cell. #### Immunity after SARS-CoV-2 infections NATURE IMMUNOLOGY | VOL 22 | MAY 2021 | 537-544 | www.nature.com/natureimmunology **Fig. 1** | Correlations between SARS-CoV-2-specific T cell responses, disease severity and peak antibody response. Zuo et al. measured SARS-CoV-2-specific T cell responses in 100 individuals six months after infection. SARS-CoV-2-specific T cell responses were measured by IFN-γ ELISpot and intracellular cytokine staining and correlated with both initial symptoms and the peak antibody response. ### **Antibody Response in COVID-19** **Figure 4.** Time kinetics of antibody response in coronavirus disease 2019 (COVID-19). The illustration demonstrates the relative levels of host immunoglobulins (IgM, IgG, IgA) and SARS-CoV-2 viral load at different stages of COVID-19. Antibody-specific seroconversion occurs when the antibody reaches a detectable level in blood. Disclaimer: This graphic is for illustrative purposes only and does not represent actual levels of each antibody. # Laboratory Diagnosis of COVID-19 - Molecular Assays (PCR) - Immunologic Assays (ELISA) ### **COVID-19 Diagnosis by PCR** Figure 9. The protocol template COVID-19 diagnostic testing through real-time RT-PCR: (1) Nasopharyngeal swab, (2) Collected specimen, (3) RNA extraction, (4) purified RNA and (5) Test results real-time (Adopted from "COVID-19 Diagnostic Test through RT-PCR", by BioRender.com, accessed on 9 April 2020) [98]. ### Immunologic Assays (ELISA) #### 2) Anti-Spike Glycoprotein Antibody https://www.news-medical.net # جمع بندی و نتیجه گیری - اهمیت طوفان سایتوکاینی و التهاب شدید در پاتولوژی ویروس سارس-۲ بالاست. - تغییرات ایمونولوژیک یکی از مهمترین دلایل اختلالات چندعضوی است. - بیماری کووید-۱۹ منحصرا پنومونی نیست و یک بیماری سیستمیک میتواند باشد. - مشکلات ایمونوترومبوز، کواگولوپاتی و اختلالات عملکری اندوتلیوم میتواند در ایجاد بیماریهای کاردیوواسکولار تاثیر بسزایی داشته باشد. - تشخیص های ایمونولوژیک کووید-۱۹ رو به پیشرفت است و با انواع سنجشهای مبتنی بر روش الایزا آشنا شدیم.