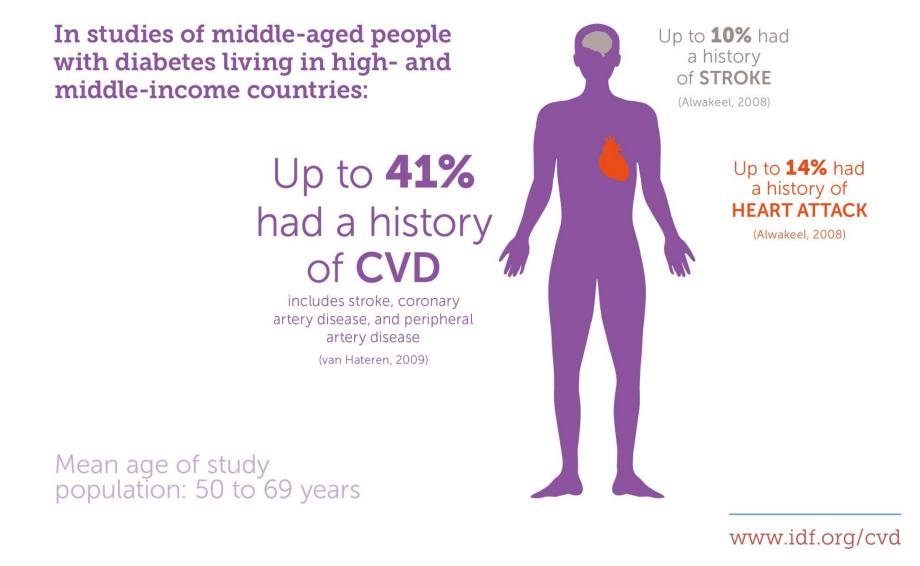
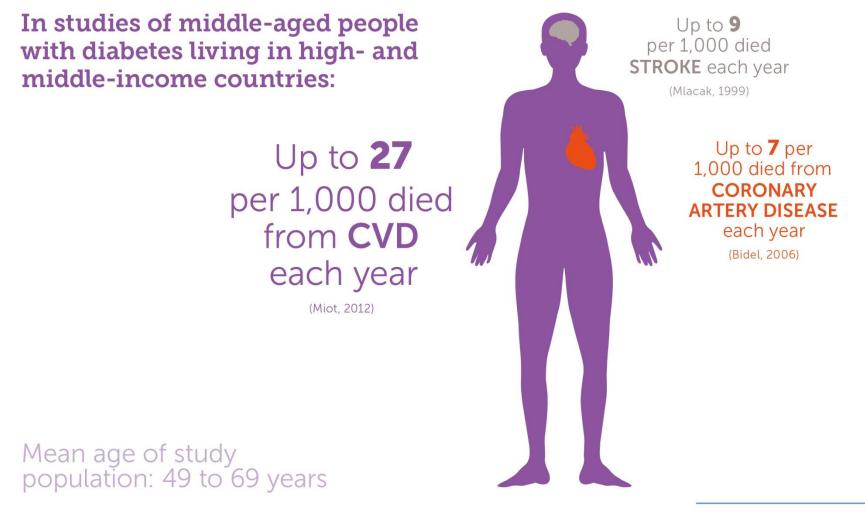
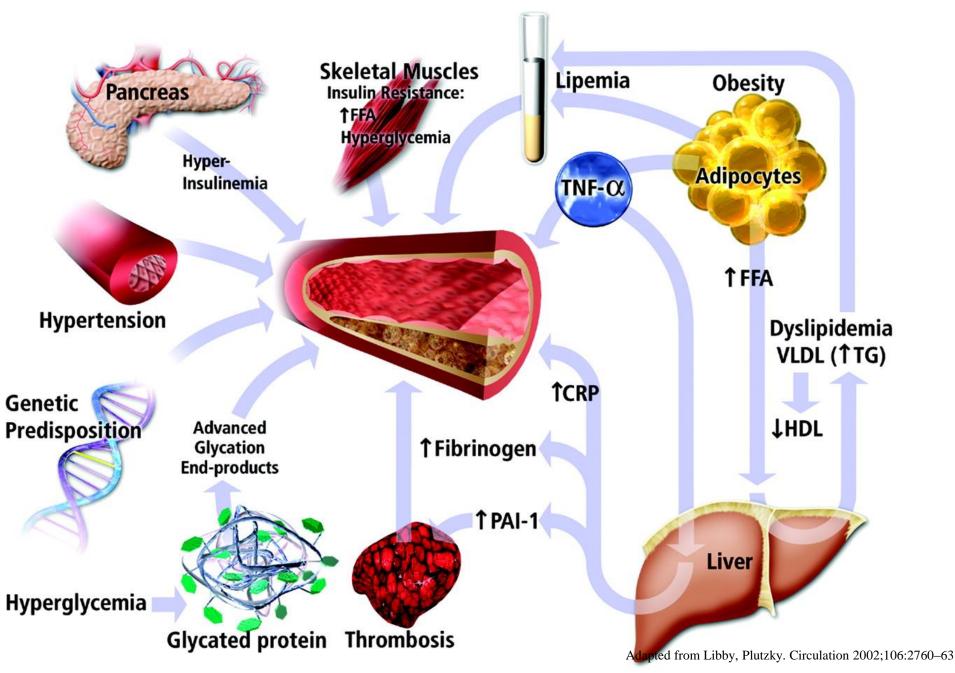
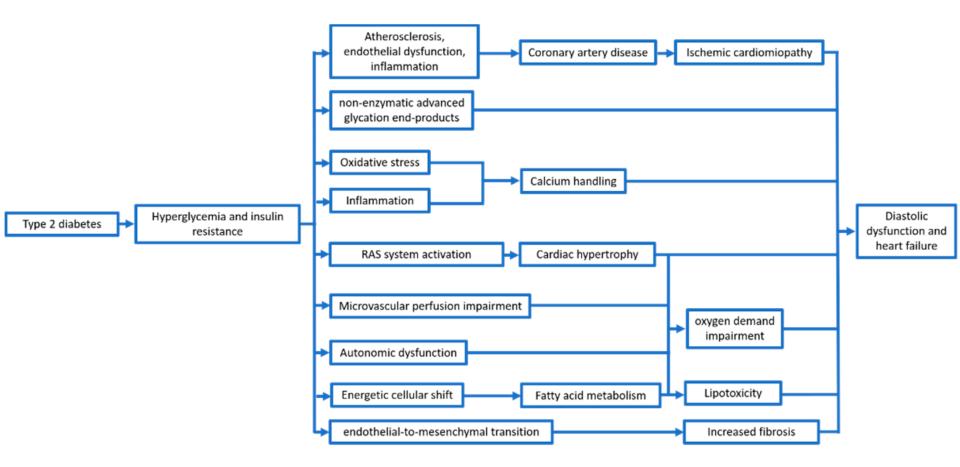
Clinical application of SGLT2is for cardiologists

Dr fereshte mohammadi Endocrinlogist Assistant professor of GUMS

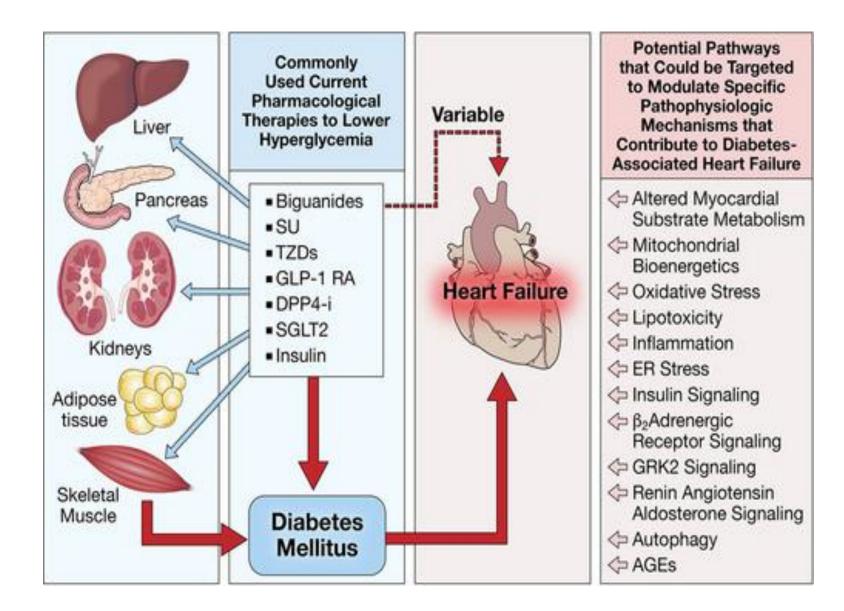

Prevalence of cardiovascular disease in younger people with type 1 diabetes


Prevalence of cardiovascular disease in middleaged people with diabetes


Cardiovascular disease mortality in middle-aged people with diabetes



www.idf.org/cvd


Many factors contribute to increased CV risk in T2D

Main mechanisms leading to ventricular dysfunction in type 2 diabetes patients

https://www.mdpi.com/ijms/ijms-22-05863/article_deploy/html/images/ijms-22-05863-g001.png

Helena C. Kenny. Circulation Research. Heart Failure in Type 2 Diabetes Mellitus, Volume: 124, Issue: 1, Pages: 121-141, DOI: (10.1161/CIRCRESAHA.118.311371)

Effects on CVD risk among glucoselowering agents

Specific effects on CVD Risk Non-Specific effects on CVD Risk

Metformin?

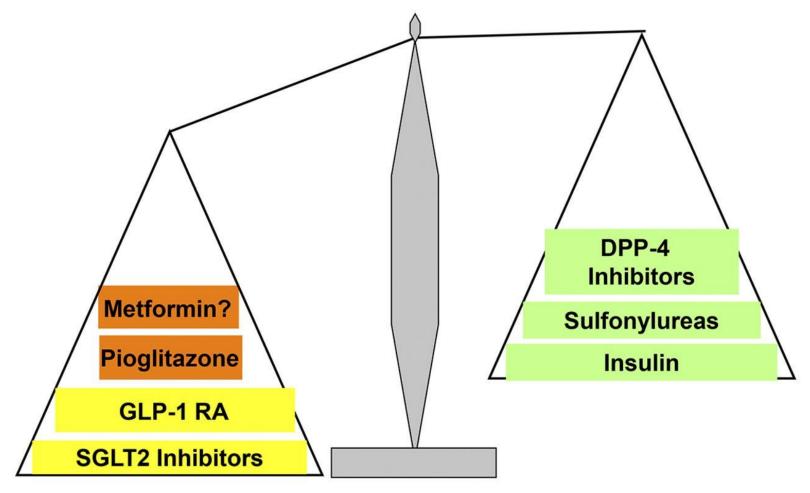
Pioglitazone

GLP-1 receptor agonists *

SGLT2 inhibitors *

DPP-4 inhibitors

Sulfonylureas


Glinide

Alpha-glucosidase inhibitors?

Insulin

* evidenced by CVOTs

Cardiovascular risk profile of antidiabetes medications.

Decrease CVD Risk

Muhammad Abdul-Ghani et al. Dia Care 2017;40:813-820

No Effect on CVD Risk

Pioglitazone

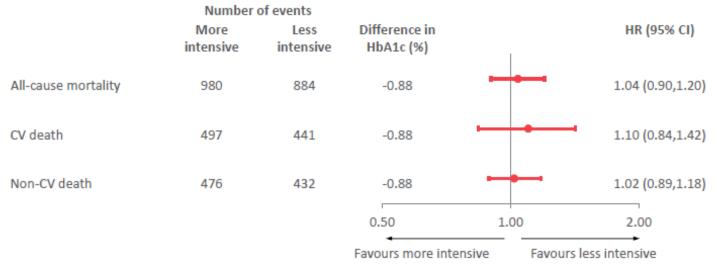
- Leading to a 42% increased risk of incident heart failure

• Dipeptidyl peptidase 4 inhibitors

Appear to have a neutral effect on major adverse cardiovascular events

• Insulin for type 2 diabetes

- 27% increase in all-cause mortality
- 23% increase in hospitalisation for heart failure.

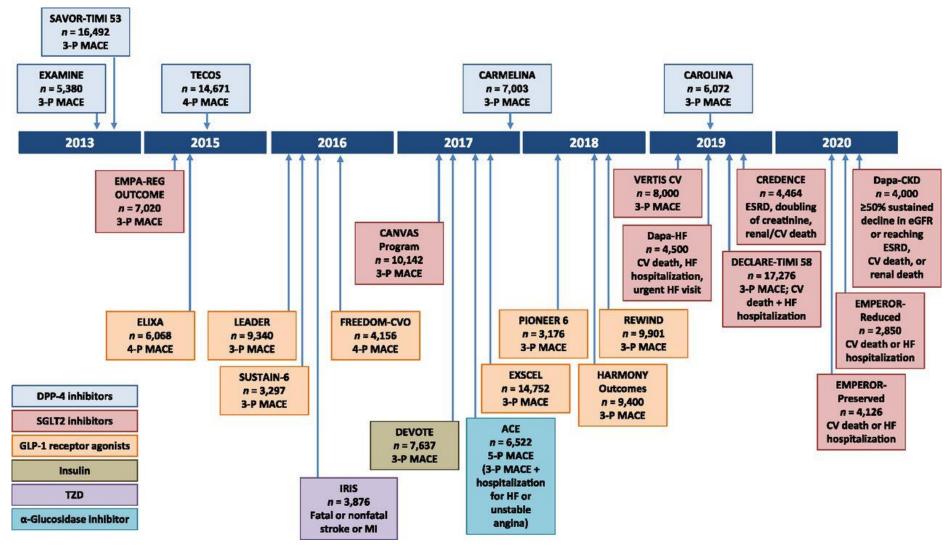

Meta-analysis of intensive glucose control in T2DM: major CV events including heart failure

	Number of events						
	More intensive	Less intensive	Difference in HbA1c (%)	I	HR (95% CI)		
Stroke	378	370	-0.88		0.96 (0.83, 1.10)		
Myocardial infarction	730	745	-0.88		0.85 (0.76, 0.94)		
Hospitalization for or death from heart failure	459	446	-0.88		1.00 (0.86, 1.16)		
			0.50	1.00	2.00		
			•				
			Favours more in	ntensive Favours le	ess intensive		

- Meta-analysis of 27,049 participants and 2370 major vascular events from:
 - ADVANCE
 - UKPDS
 - ACCORD
 - VADT

Turnbull FM et al. Diabetologia 2009;52:2288-2298

Meta-analysis of intensive glucose control in T2DM: mortality



- Meta-analysis of 27,049 participants and 2370 major vascular events from
 - ADVANCE
 - UKPDS
 - ACCORD
 - VADT

HR, hazard ratio; CV, cardiovascular

Turnbull FM et al. Diabetologia 2009;52:2288–2298

Zinman, et al. NEJM. 2015

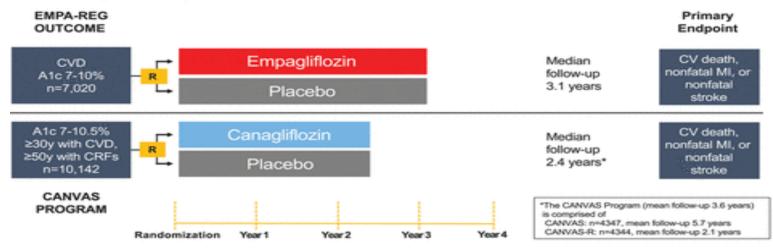
Completed and ongoing CVOTs (6–14,39,44–58). 3-P, 3-point; 4-P, 4-point; 5-P, 5-point.

William T. Cefalu et al. Dia Care 2018;41:14-31

Heart Failure Reviews https://doi.org/10.1007/s10741-021-10106-9

New antidiabetic therapy and HFpEF: light at the end of tunnel?

Marijana Tadic¹ · Carla Sala² · Sahrai Saeed³ · Guido Grassi⁴ · Giuseppe Mancia⁵ · Wolfang Rottbauer¹ · Cesare Cuspidi^{4,6}


Accepted: 6 April 2021 © The Author(s) 2021

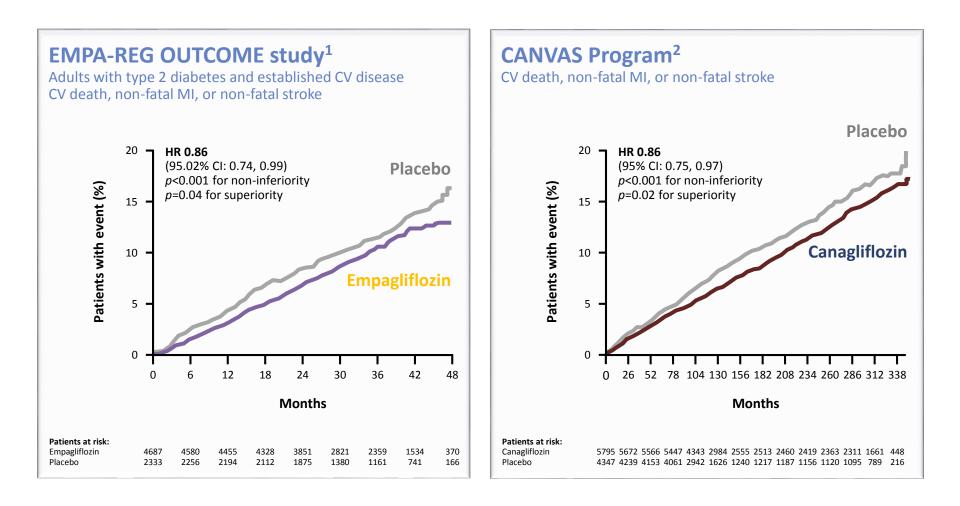
Cardiovascular Outcomes Studies

Study	n	Design	MACE Outcome	CV Death	HF Hospitalization
EMPA-REG OUTCOME 2015	7020	RDBPCT	Empagliflozin: 490 (10.5%) Placebo: 282 (12.1%) HR: 0.86 (95% CI 0.74-0.99); p<0.001 NI and 0.04 SP	Empagliflozin: 172 (3.7%) Placebo: 137 (5.9%) HR: 0.62 (95% CI 0.49-0.77); p<0.001	Empagliflozin: 126 (2.7%) Placebo: 95 (4.1%) HR: 0.65 (95% CI 0.50-0.85); p=0.002
CANVAS Program 2017	10142	RDBPCT	Canagliflozin: 29.6/1000 PY Placebo: 31.5/1000 PY HR: 0.86 (95% CI 0.75-0.97); p<0.001 NI and 0.02 SP	Canagliflozin: 11.6/1000 PY Placebo: 12.8/1000 PY HR: 0.87 (95% CI 0.72-1.06) [^]	Canagliflozin: 5.5/1000 PY Placebo: 8.7/1000 PY HR: 0.67 (95% CI 0.52-0.87) [*]
DECLARE- TIMI 58 2018	17160	RDBPCT	Dapagliflozin: 756 (8.8%) Placebo: 803 (9.4%) HR: 0.93 (95% CI 0.84-1.03); p<0.001 NI and p=0.17 SP	Dapagliflozin: 245 (2.9%) Placebo: 249 (2.9%) HR: 0.98 (95% Cl 0.82-1.17)	Dapagliflozin: 212 (2.5%) Placebo: 286 (3.3%) HR: 0.73 (95% CI 0.61-0.88)
VERTIS CV 2020	8246	RDBPCT	Ertugliflozin: 653 (11.9%) Placebo: 327 (11.9%) HR: 0.97 (95% CI 0.85-1.11); p<0.001 NI	Ertugliflozin: 341 (6.2%) Placebo: 184 (6.7%) HR: 0.92 (95% Cl 0.77-1.11) [^]	Ertugliflozin: 139 (2.5%) Placebo: 99 (3.6%) HR: 0.70 (95% CI 0.54-0.90) [^]
CV = cardiovascul double-blind, place *Exploratory				ascular event; NI = non-inferiority; PY = p	atient years; RDBPCT = Randomized,

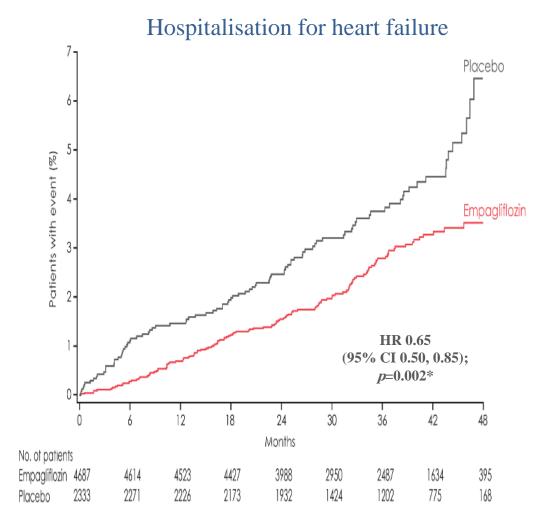
J Med 373;22. N Engl J Med 377;7. N Engl J Med 380;4. N Engl J Med 383;15.

A Trial Design Summary

B Summary of key cardiovascular outcomes


	Active Rate per 1000 patient-years	Placebo Rate per 1000 patient-years	Hazard Ratio (95% Cl)	EMPA-REG CANVAS
MACE-3	37.4	43.9	0.86 (0.74 - 0.99)	
	26.9	31.5	0.86 (0.75 - 0.97)	
CV Death	12.4	20.2	0.62 (0.49 - 0.77)	
	11.6	12.8	0.87 (0.72 - 1.06)	
Fatal and nonfatal MI	16.8	19.3	0.87 (0.70 - 1.09)	
	11.2	12.6	0.89 (0.73 - 1.09)	
Fatal and nonfatal stroke	12.3	10.5	1.18 (0.89 - 1.56)	
	7.9	9.6	0.87 (0.69 - 1.09)	
Heart failure hospitalizatio	n 19.4	14.5	0.65 (0.50 - 0.85)	
	5.5	8.7	0.67 (0.52 - 0.87)	
All cause mortality	19.4	28.6	0.68 (0.57 - 0.82)	
	17.3	19.5	0.87 (0.74 - 1.01)	

0.50 0.75 1.0 1.5 2.0 Favors SGLT2-i Favors Placebo



M. Angelyn Bethel. Circulation. Class Effect for Sodium Glucose-Cotransporter-2 Inhibitors in Cardiovascular Outcomes, Volume: 137, Issue: 12, Pages: 1218-1220, DOI: (10.1161/CIRCULATIONAHA.117.030117)

Overview of CVOT findings for SGLT2 inhibitors

Heart failure outcome with SGLT2 inhibitors

RRR for HHF is 35%; rates of HHF: 2.7% (empagliflozin) vs 4.1% (placebo); ARR for HHF is 1.4% *Nominal *p*-value. Cumulative incidence function ARR, absolute risk reduction; CV, cardiovascular; HHF, hospitalisation for heart failure; RRR, relative risk reduction Zinman B *et al. N Engl J Med* 2015;373:2117

Hospitalization for Heart Failure

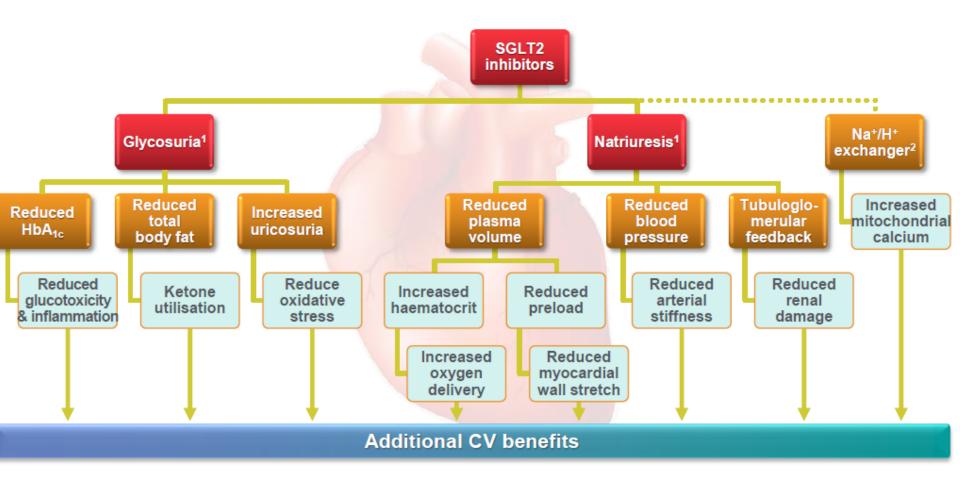
Reduced risk of CV death was not associated with change in HbA_{1c} during the EMPA-REG OUTCOME study

	Patients with event/analysed					
	Empagliflozin	Placebo	HR (95% CI)		<i>p</i> value	
All patients	172/4687 (3.7)	137/2333 (5.9)	0.62 (0.49, 0.77)	-		
Change from baseline in HbA ₁	_c at the last valu	e in the trial				
Any reduction	109/2957 (3.7)	74/1158 (6.4)	0.60 (0.44, 0.80)			
Increase or no change	63/1728 (3.6)	63/1175 (5.4)	0.64 (0.45, 0.91)		0.7744	
Reduction of $\geq 0.3\%$	97/2614 (3.7)	65/974 (6.7)	0.58 (0.42, 0.79)			
Reduction of <0.3% or increase	75/2071 (3.6)	72/1359 (5.3)	0.65 (0.47, 0.90)	-	0.5996	
			0.25			
			0.25 Fay	ours	2.00 Favour	
			empaglif	—	placebo	

(test for treatment by subgroup interaction) with no adjustment for multiple testing

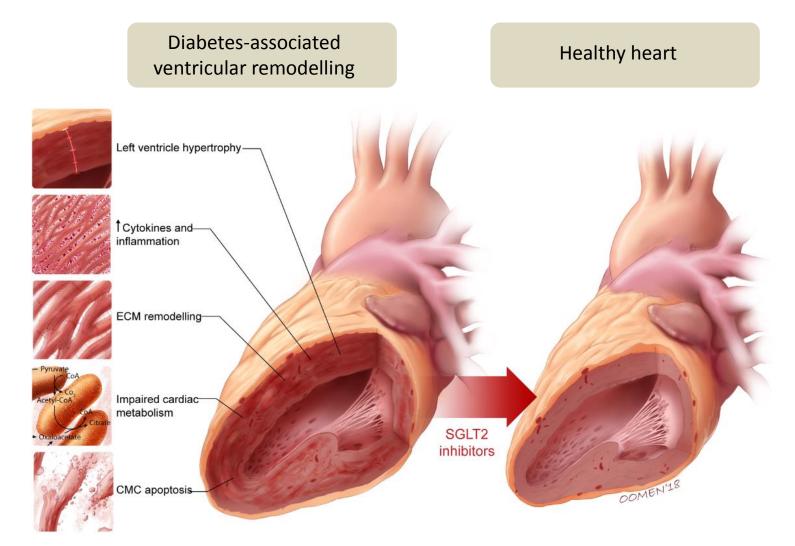
CI, confidence intervals; HbA_{1c}, glycated haemoglobin.

Inzucchi S, et al. Poster presented at Diabetes UK Professional Conference, 14-16 March 2018, London, UK.

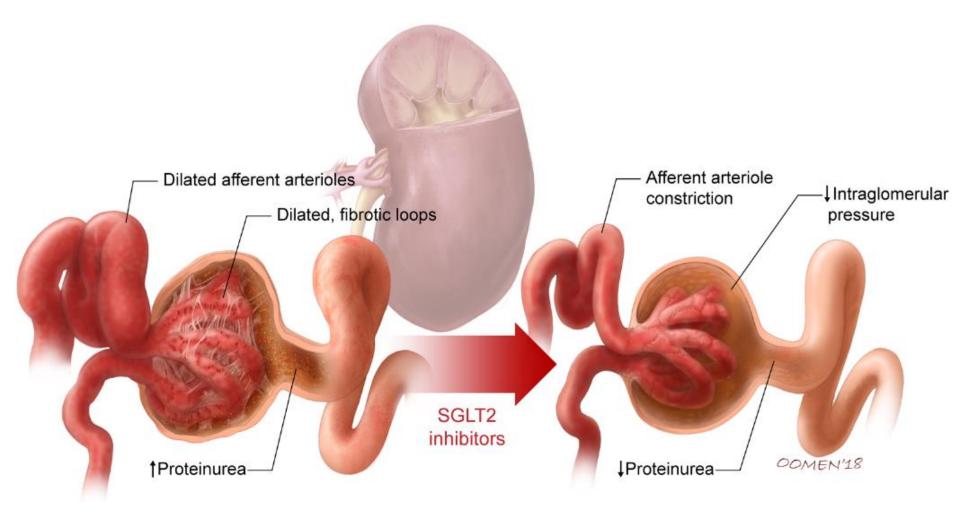

Reduced risk of CV death was not associated with BP, LDL-cholesterol or HbA_{1c} control over time

CV death Empagliflozin Placebo HR (95% CI) p value Main analysis 172/4687 (3.7) 137/2333 (5.9) 0.62 (0.49, 0.77) < 0.0001 Adjusted for time-dependent 172/4687 (3.7) 137/2333 (5.9) 0.61 (0.49, 0.76) control of BP* Adjusted for time-dependent 167/4615 (3.6) 136/2308 (5.9) 0.59 (0.47, 0.75) control of LDL-C⁺ Adjusted for time-dependent 172/4685 (3.7) 137/2333 (5.9) 0.62 (0.49, 0.78) control of HbA₁⁺ Adjusted for time-dependent 167/4614 (3.6) 136/2308 (5.9) 0.61 (0.48, 0.76) control of BP, LDL-C and HbA_{1c} 0.25 1 **Favours** Favours empagliflozin placebo

Patients with event/analysed (%)

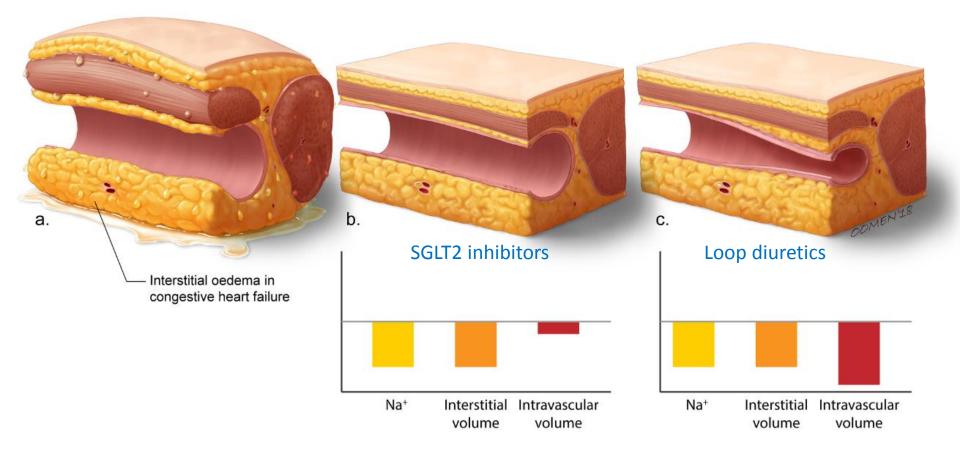

*(SBP <140 mmHg and DBP <90mmHg). [†](LDL-cholesterol <100mg/dl). [‡](HbA_{1c}<7.5%). Post-hoc analysis. Cox regression analysis in patients treated with ≥1 dose of study drug. Main analysis did not adjust for baseline or time-dependent control of BP, LDL-cholesterol or HbA1c. Fitchett D, et al. Poster presented at Diabetes UK Professional Conference, 14-16 March 2018, London, UK.

Multiple mechanisms may contribute to CV benefits with SGLT2 inhibitors


1. Heerspink HJL, et al. Circulation 2016;134:752–72; 2. Baartscheer A, et al. Diabetologia 2017;60:568

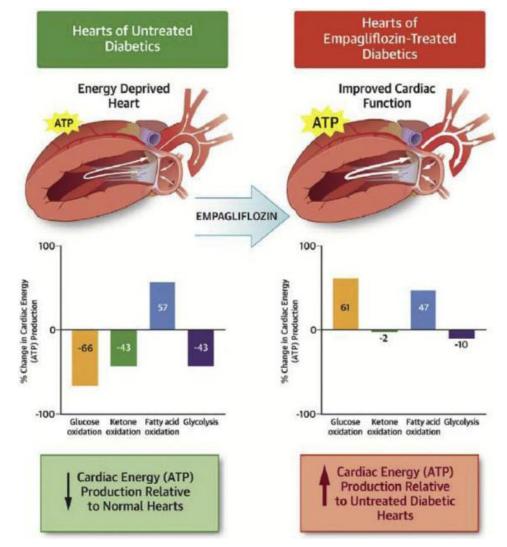
Cardiovascular protection by SGLT2 inhibitors

Verma and McMurray (2018) Diabetologia DOI 10.1007/s00125-018-4670-7 © G. Oomen 2018 Diabetologia

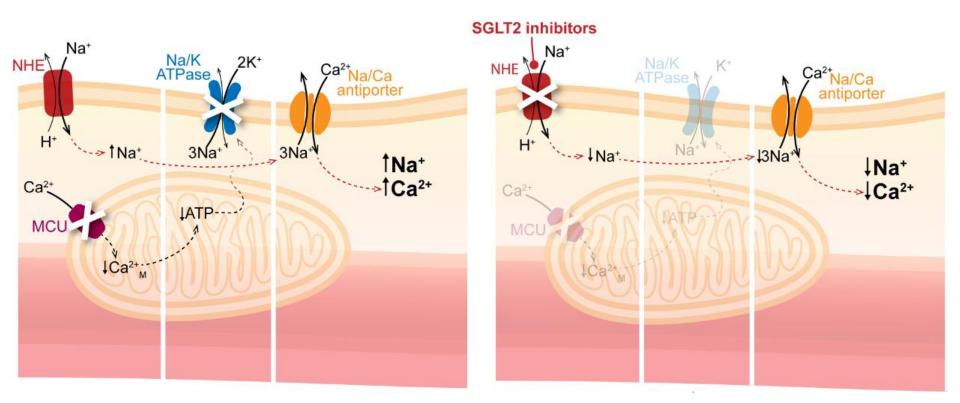

SGLT2 inhibitors improve ventricular loading conditions

Verma and McMurray (2018) Diabetologia DOI 10.1007/s00125-018-4670-7 © G. Oomen 2018

Diabetologia


SGLT2 inhibitors may differentially regulate the interstitial vs intravascular compartment when compared with loop diuretics

Verma and McMurray (2018) Diabetologia DOI 10.1007/s00125-018-4670-7 © G. Oomen 2018


Diabetologia

Myocardial energetics

Verma S et al. <u>Empagliflozin</u> increases cardiac energy production in diabetes. *JACC Basic Trans Sci.* 2018;3:575 – 587.)

SGLT2 inhibition and direct effects on Na+/H+ exchange in the myocardium

Verma and McMurray (2018) Diabetologia DOI 10.1007/s00125-018-4670-7 © G. Oomen 2018

Diabetologia

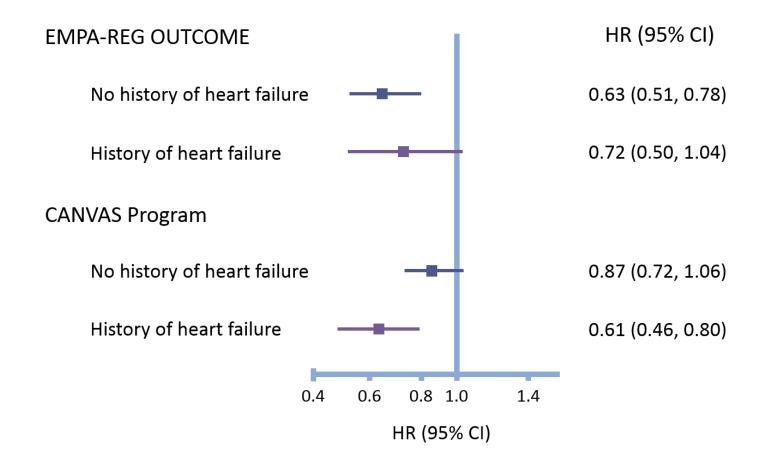
Xiang et al. Cardiovasc Diabetol (2021) 20:78 https://doi.org/10.1186/s12933-021-01266-x

Cardiovascular Diabetology

REVIEW

Open Access

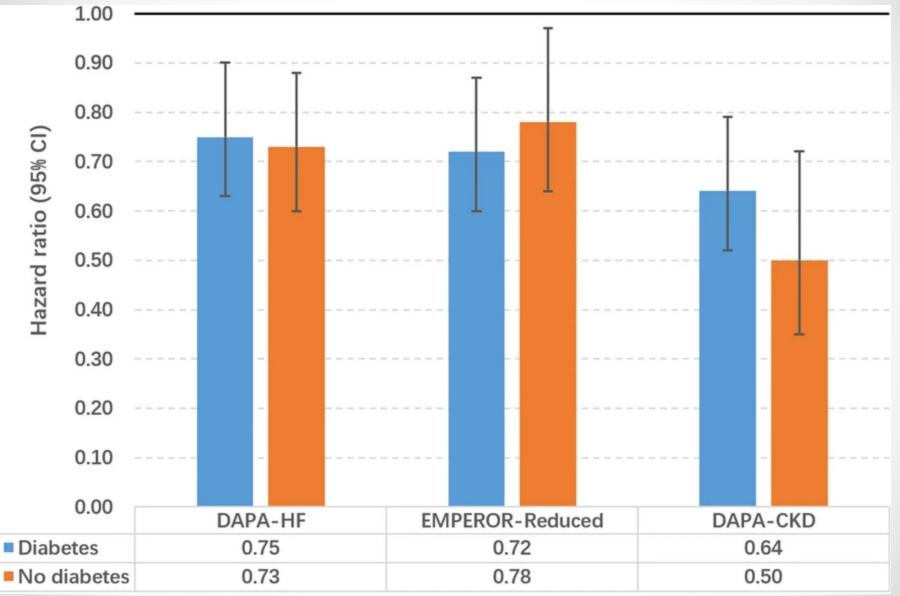
Cardiovascular benefits of sodium-glucose cotransporter 2 inhibitors in diabetic and nondiabetic patients


Boyang Xiang, Xiaoya Zhao and Xiang Zhou*

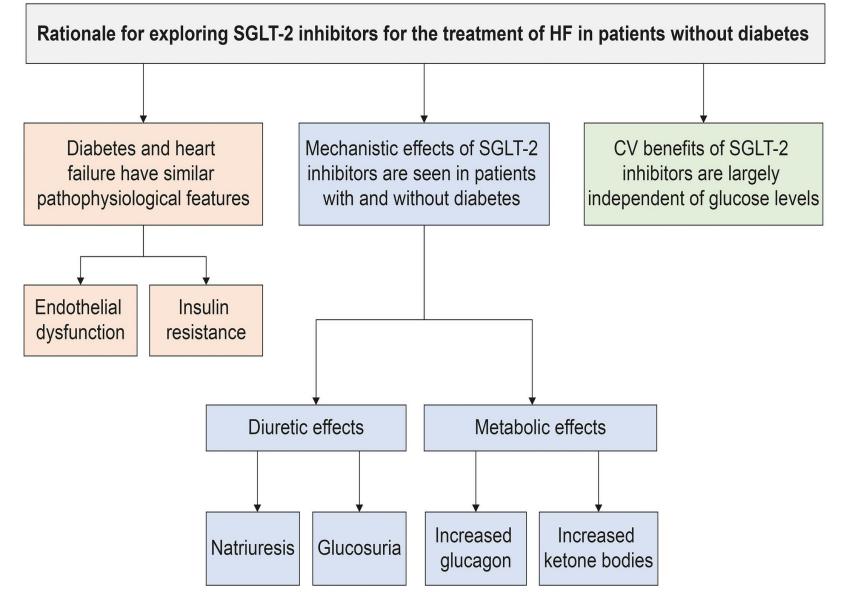
Abstract

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) were developed as antidiabetic agents, but accumulating evidence has shown their beneficial effects on the cardiovascular system. Analyses of the EMPA-REG OUTCOME trial (Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients) suggested that these benefits

The cardiovascular benefits with empagliflozin (EMPA-REG OUTCOME trial) and canagliflozin (CANVAS) in participants with and without a history of heart failure

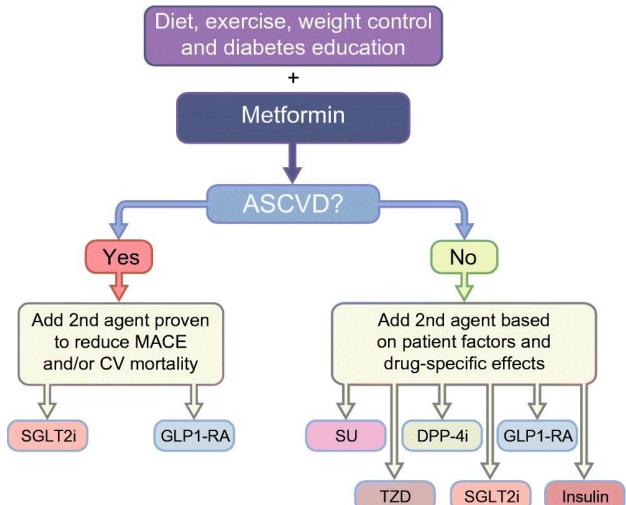


Verma and McMurray (2018) Diabetologia DOI 10.1007/s00125-018-4670-7


 $\ensuremath{\mathbb{C}}$ Springer-Verlag GmbH Germany, part of Springer Nature 2018

Diabetologia

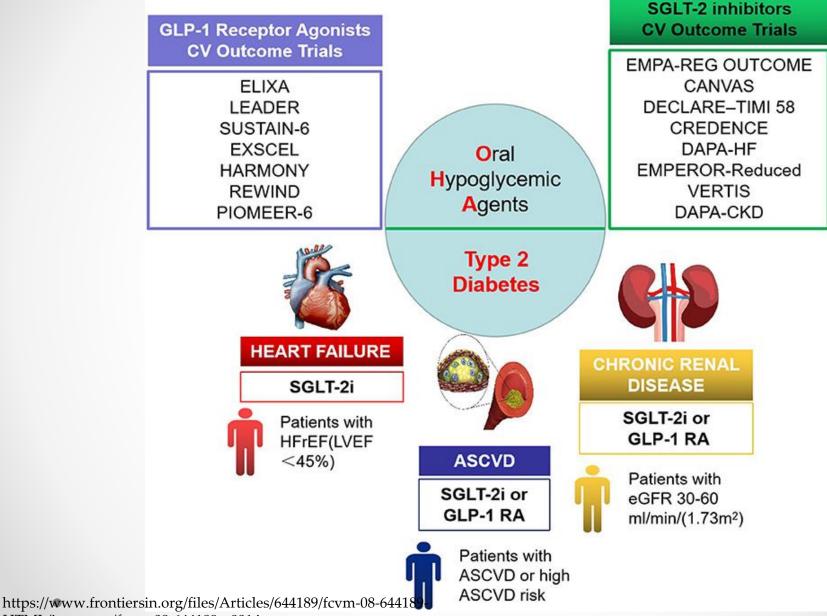
Cardiovascular benefits of sodium-glucose cotransporter 2 inhibitors in diabetic and nondiabetic patients


https://media.springernature.com/full/springer-static/image/art%3A10.1186%2Fs12933-021-01266-x/MediaObjects/12933_2021_1266_Fig3_HTML.png?as=webp

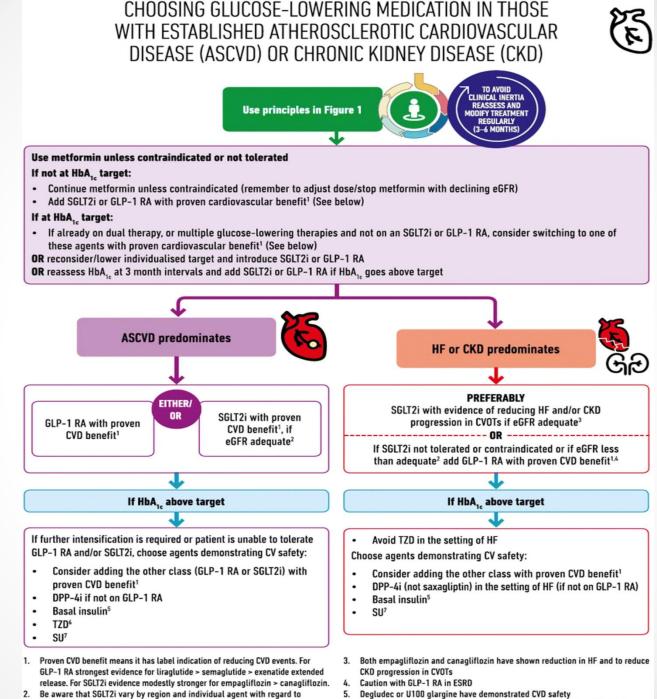
Ş

Carolyn S. P. Lam. Journal of the American Heart Association. SGLT-2 Inhibitors in Heart Failure: Current Management, Unmet Needs, and Therapeutic Prospects, Volume: 8, Issue: 20, DOI: (10.1161/JAHA.119.013389)

Copyright © 2019 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell Summary of latest ADA guidelines for the use of glucose-lowering drugs in individuals with type 2 diabetes in monotherapy and dual combination therapy.



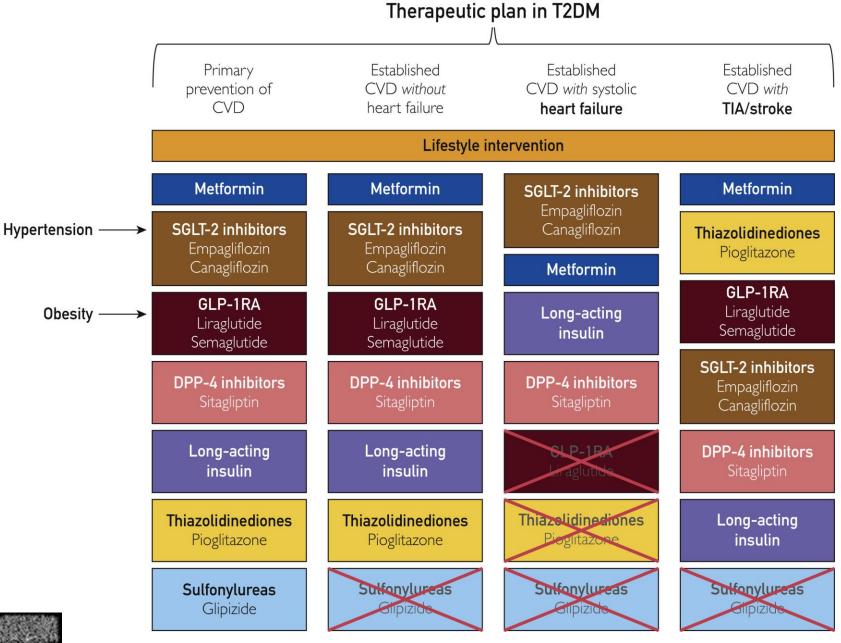
https://media.springernature.com/full/springerstatic/image/art%3A10.1007%2Fs00125-018-4663-6/MediaObjects/125_2018_4663_Fig2_HTML.png?as=webp


Current Recommendations on Antidiabetic Drugs

Organisation and Year of Publication	First-line Option(s)	Second-line Option(s) – On Metformin Monotherapy
European Society of Cardiology 2019 ²	ASCVD/high CV risk SGLT2 inhibitors ⁺⁺ or GLP-1 RAs* <u>Without ASCVD/low CV risk</u> Metformin	ASCVD/high CV Risk SGLT2 inhibitors ^{**} or GLP-1 RAs [*] Without ASCVD/low CV Risk DPP-4 inhibitors/GLP-1 RAs/SGLT2 inhibitors/TZDs
American Diabetes Association 2020 ³	Metformin	High risk/established ASCVD GLP-1 RAs* (preferred)/SGLT2 inhibitors* High risk/established CKD/HF SGLT2 inhibitors*' (preferred)/GLP-1 RAs* Without established or risk factors for ASCVD/CKD/HF DPP-4 inhibitors/GLP-1 RAs/SGLT2 inhibitors/TZDs/SUs
International Diabetes Association 2017 ⁴	Metformin	SUs (except glibenclamide/glyburide)/DPP-4 inhibitors/SGLT2 inhibitors Weight loss prioritised GLP-1 RAs
National Institute for Health and Care Excellence 2015 (updated 2019) ⁶⁴	Metformin	DPP-4 Inhibitors/pioglitazone/sulphonylureas/SGLT2 inhibitors

"With proven cardiovascular benefits, indication of reducing cardiovascular events. ¹Only if estimated glomerular filtration rate is adequate. ASCVD = atherosclerotic cardiovascular disease; CKD = chronic kidney disease; CV = cardiovascular; DPP-4 = dipeptidyl peptidase-4; GLP-1 RAs = glucagon-like peptide 1 receptor agonists; HF = heart failure; SGLT2 = sodium–glucose co-transporter 2; SU = sulphonylurea; TZDs = thiazolidinediones. Cardiorenal benefit of oral hypoglycemic agents in therapeutic focus of type 2 diabetes mellitus (T2DM).

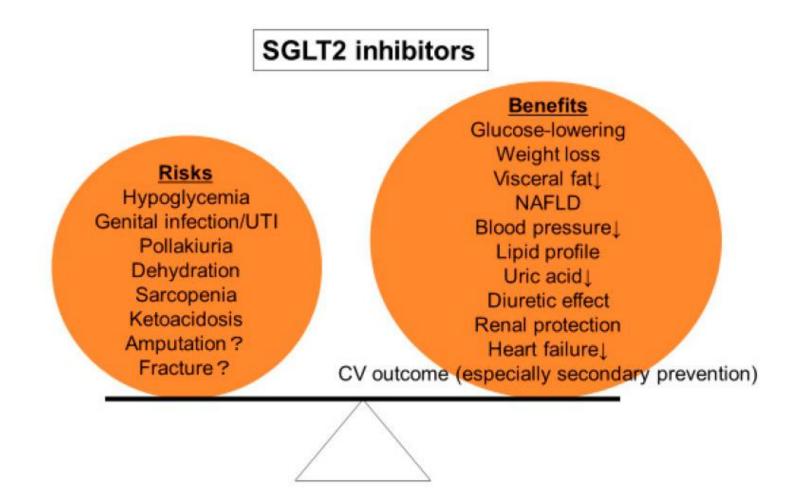
HTML/image_m/fcvm-08-644189-g001.jpg



6.

7.

Be aware that SGLT2i vary by region and individual agent with regard to 2. indicated level of eGFR for initiation and continued use


Choose later generation SU to lower risk of hypoglycaemia

ELSEVIER

2018 Mayo Foundation for Medical Education and Research Terms and Conditions

Risks and benefits of SGLT2 inhibitors

https://www.ncbi.nlm.nih.gov/pmc/articles/instance/7349723/bin/dise ases-08-00014-g002.jpg

