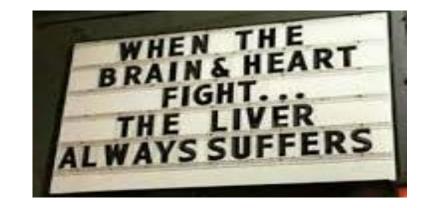
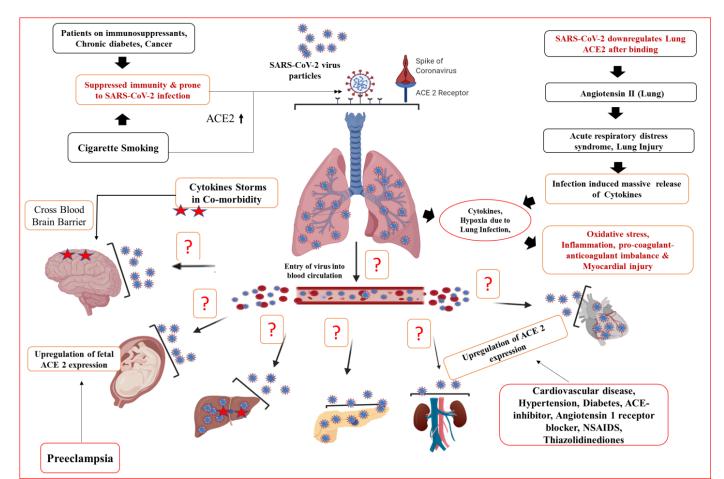
treatment

- Predisposing factor
- Fluid and hemodynamic
- nutrition
- Mechanical ventilation
- Rescue therapies



What Causes ARDS?

- Sepsis
- Inhaling harmful substances
- Pneumonia
- Trauma to the head, chest or other areas of the body
- Blood transfusions
- Pancreatitis
- Near drowning


treatment

- Supranormal oxygen delivery?
- Liberal fluid strategy?
- Multi system organ failure!
- Conservative fluid strategy
- CVP<4 if no shock
- Zero net fluid balance

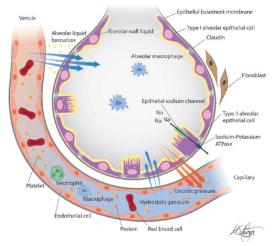
ARDS Most common cause of death is not pulmonary

ARDS management

- intelligent use of sedatives
- hemodynamic management
- nutritional support
- control of blood glucose levels
- evaluation and treatment of nosocomial pneumonia
- prophylaxis against deep venous thrombosis (DVT)
- prophylaxis against gastrointestinal (GI) bleeding
- neuromuscular blockade

Nutrition in ARDS

- Adequate micro and macro nutrition
- Enteral is preferred
- immunomodulatory
- Omega 3 ???
- high fat low carbohydrate
- Full calorie vs Trophic?



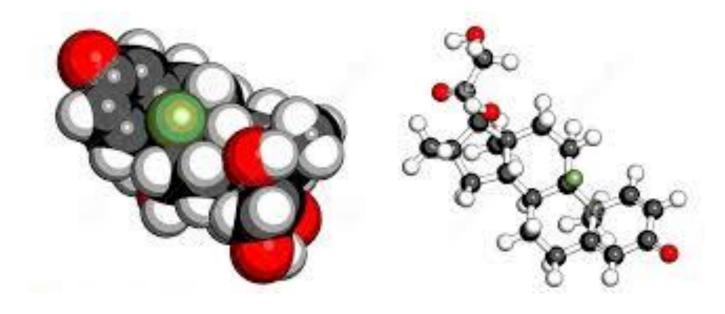
Non ARDS indications of Glucocorticoids

- non-ARDS-related indications for systemic glucocorticoid therapy
- ARDS has been precipitated by a steroid-responsive process (eg, acute eosinophilic pneumonia)
- ARDS who have refractory sepsis or community-acquired pneumonia if they meet indications

ARDS indications of Glucocorticoids

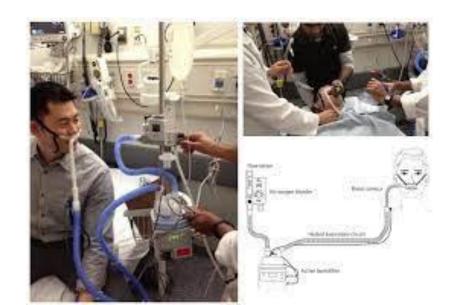
- early moderate to severe ARDS fail standard therapies
- (within 14 days of onset)
- persistent or refractory moderate to severe ARDS ([PaO /FiO] <200) despite initial management with standard therapies including low tidal volume ventilation.

Glucocorticoids

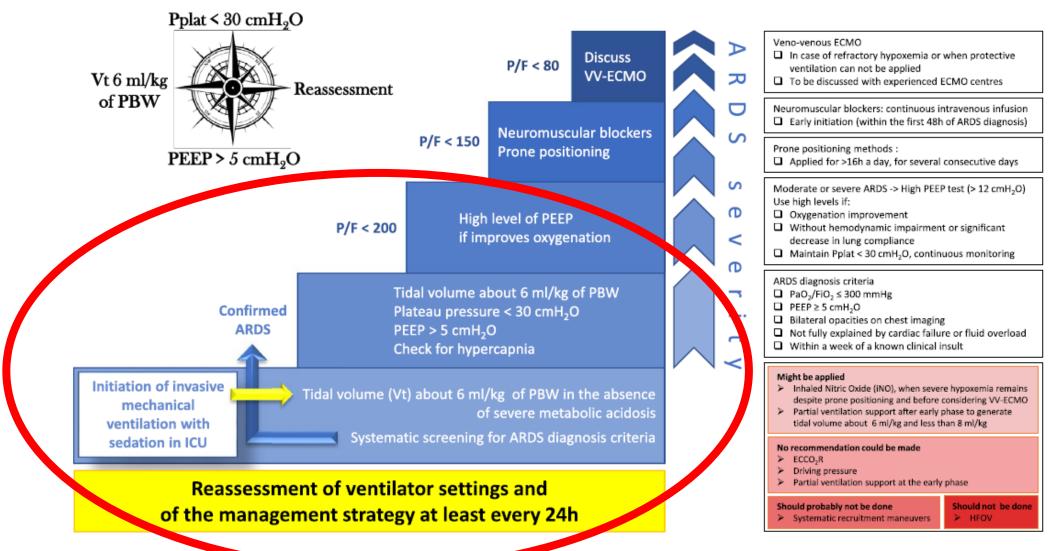

- less severe ARDS
- Patients late in the disease course
- (persistent ARDS beyond 14 days)
- certain viral infections(ARDS secondary to influenza)

Glucocorticoids in ARDS

	How strong in the indication to use steroids?							
is the risk of complications from steroids?	Very Strong(eg, P/F ratio < 200despite optimalventilator management,septic shock, COVID-19with > 7 days sincesymptoms onset)		<i>←←←←←</i>	Not Very Strong (eg, P/F ratio 200-300, influenza, non- infectious etiologies such as trauma, rapidly improving P/F)				
of compli	Low	Give Steroids.	Suggest Steroids	Consider steroids on case-by-case basis.				
	\rightarrow	Suggest steroids	Consider steroids on case-by-case basis.	Suggest against steroids				
How strong	High	Consider steroids on case-by-case basis.	Suggest against steroids	Do not give steroids.				


glucocorticoid therapy in ARDS

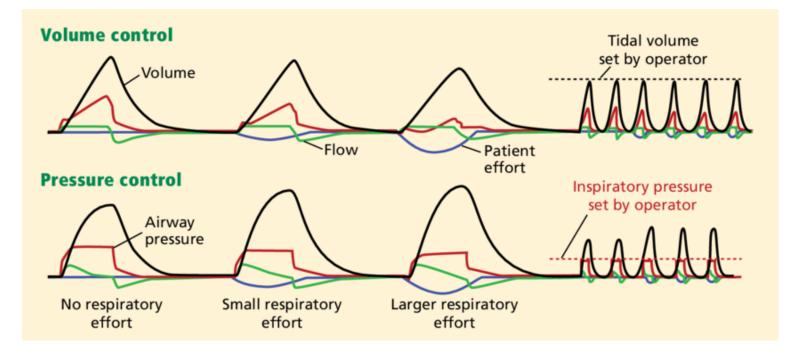
- Methylprednisolone 1 mg/kg per day for 21 to 28 days followed by a taper [41,42].
- Dexamethasone 20 mg IV once daily for five days, then 10 mg once daily for five days



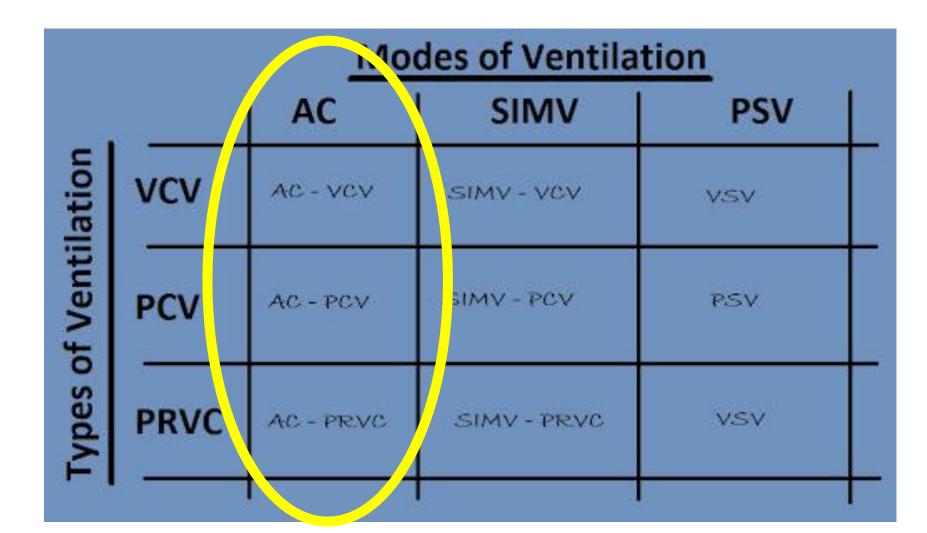
hypoxemia

- Use of high fractions of inspired oxygen (FiO2)
- Decrease oxygen consumption
- Improve oxygen delivery
- Manipulate mechanical ventilatory support

Early management of ARDS in 2019



Mechanical ventilation in ARDS



Volume- versus pressure-limited mode

- In most patients with ARDS
- a volume-limited mode will produce a stable tidal volume
- a pressure-limited mode will deliver a stable airway pressure

Assist control vs SIMV

VENTILATOR SETUP AND ADJUSTMENT

- Calculate predicted body weight (PBW)
- Males = 50 + 2.3 [height (inches) 60]
- Females = 45.5 + 2.3 [height (inches) -60]
- Select any ventilator mode
- Set ventilator settings to achieve initial $V^{T} = 6 \text{ ml/kg PBW}$
- Reduce V^T by 1 ml/kg at intervals \leq 2 hours until V^T = 4ml/kg PBW.
- Set initial rate to approximate baseline minute ventilation (not > 35 bpm).
- Adjust V^{T} and RR to achieve pH and plateau pressure goals below.

OXYGENATION GOAL: PaO₂ 55-80 mmHg or SpO₂ 88-95%

Use a minimum PEEP of 5 cm H₂O. Consider use of incremental FiO₂/PEEP combinations such as shown below (not required) to achieve goal.

Lower PEEP/higher FiO2

FiO ₂	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7
PEEP	5	5	8	8	10	10	10	12

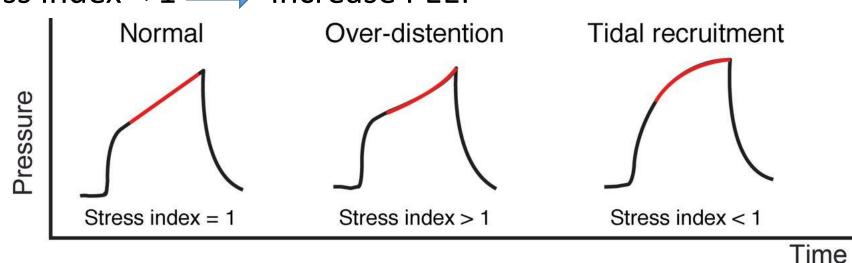
FiO ₂	0.7	0.8	0.9	0.9	0.9	1.0
PEEP	14	14	14	16	18	18-24

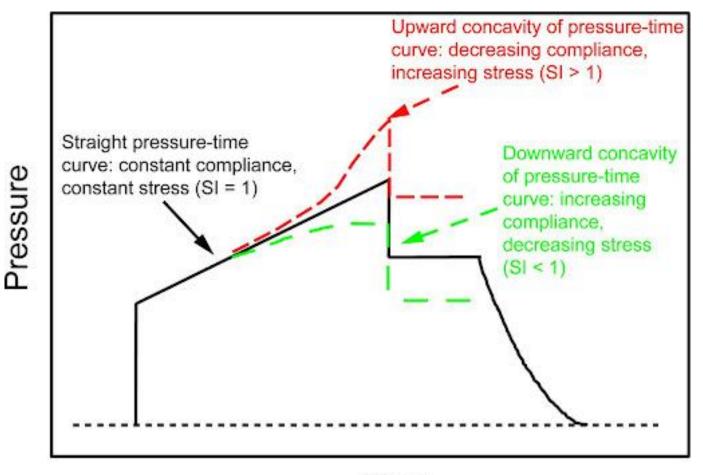
Higher PEEP/lower FiO2


FiO ₂	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5
PEEP	5	8	10	12	14	14	16	16

FiO ₂	0.5	0.5-0.8	0.8	0.9	1.0	1.0
PEEP	18	20	22	22	22	24

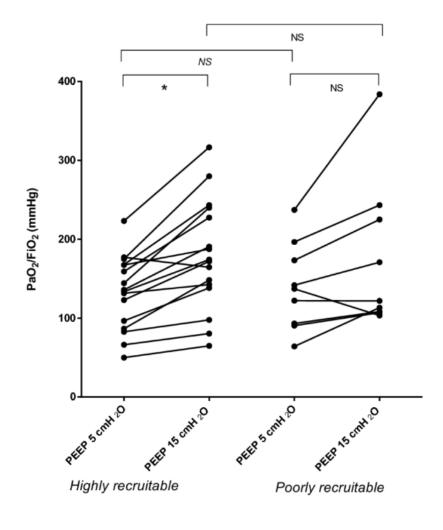
Permissive hypercapnea


- PaCO2 \implies PAP \implies RR 25 and 30 cycles/min
 - Too high a rate dynamic hyperinflation
 - A PaCO2 below 50 mmHg
 - instrumental dead space



Stress Index

- pressure-time curve during constant flow-volume control ventilation
- constant compliance, stress index = 1 adequate alveolar recruitment
- progressive decrease in compliance, upward concavity, stress index > 1 → over-distention decrease the PEEP, V_T, or both
- progressive increase in compliance, downward concavity, stress index < 1 increase PEEP


Stress index

Time

Recruitment-to-Inflation (R/I) ratio

- abrupt release of PEEP from 15 to 5 cmH2O increases the expired volume.
- compliance at low PEEP multiplied by PEEP change
- estimates the volume recruited by PEEP
- A high R/I ratio means high potential for recruitment
- R/I ratio change in SpO2 low and high PEEP

RESEARCH

Recruitability and effect of PEEP in SARS-Cov-2-associated acute respiratory distress syndrome

François M. Beloncle^{1*}, Bertrand Pavlovsky¹, Christophe Desprez¹, Nicolas Fage¹, Pierre-Yves Olivier¹, Pierre Asfar¹, Jean-Christophe Richard^{1,2} and Alain Mercat¹

Abstract

Background: A large proportion of patients with a SARS-Cov-2-associated respiratory failure develop an acute respiratory distress syndrome (ARDS). It has been recently suggested that SARS-Cov-2-associated ARDS may differ from usual non-SARS-Cov-2-associated ARDS by higher respiratory system compliance (C_{RS}), lower potential for recruitment with positive end-expiratory pressure (PEEP) contrasting with severe shunt fraction. The purpose of the study was to systematically assess respiratory mechanics and recruitability in SARS-Cov-2-associated ARDS.

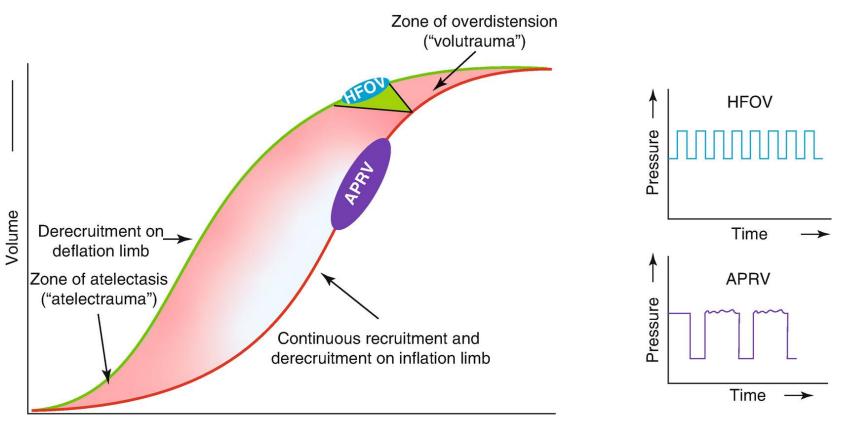
Methods: Gas exchanges, C_{RS} and hemodynamics were assessed at 2 levels of PEEP (15 cmH₂O and 5 cmH₂O) within 36 h (day1) and from 4 to 6 days (day 5) after intubation. The recruited volume was computed as the difference between the volume expired from PEEP 15 to 5 cmH₂O and the volume predicted by compliance at PEEP 5 cmH₂O (or above airway opening pressure). The recruitment-to-inflation (R/I) ratio (i.e. the ratio between the recruited lung compliance and C_{RS} at PEEP 5 cmH₂O) was used to assess lung recruitability. A R/I ratio value higher than or equal to 0.5 was used to define highly recruitable patients.

Results: The R/I ratio was calculated in 25 of the 26 enrolled patients at day 1 and in 15 patients at day 5. At day 1, 16 (64%) were considered as highly recruitable (R/I ratio median [interquartile range] 0.7 [0.55–0.94]) and 9 (36%) were considered as poorly recruitable (R/I ratio 0.41 [0.31–0.48]). The PaO₂/FiO₂ ratio at PEEP 15 cmH₂O was higher compared to PEEP 5 cmH₂O only in highly recruitable patients (173 [139–236] vs 135 [89–167] mmHg; p < 0.01). Neither PaO₂/FiO₂ or C_{RS} measured at PEEP 15 cmH₂O or at PEEP 5 cmH₂O nor changes in PaO₂/FiO₂ or C_{RS} in response to PEEP changes allowed to identify highly or poorly recruitable patients.

Conclusion: In this series of 25 patients with SARS-Cov-2 associated ARDS, 64% were considered as highly recruitable and only 36% as poorly recruitable based on the R/I ratio performed on the day of intubation. This observation suggests that a systematic R/I ratio assessment may help to guide initial PEEP titration to limit harmful effect of unnecessary high PEEP in the context of Covid-19 crisis.

Keywords: Covid-19, SARS-Cov-2, Acute respiratory distress syndrome, Respiratory failure, Mechanical ventilation, Respiratory mechanics, Recruitability, Positive end-expiratory pressure

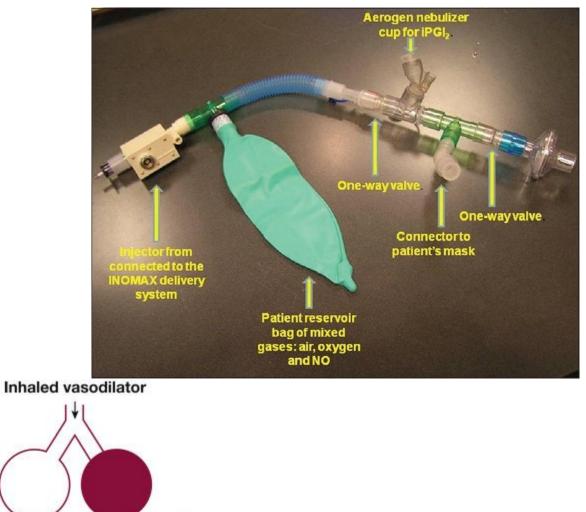
APRV

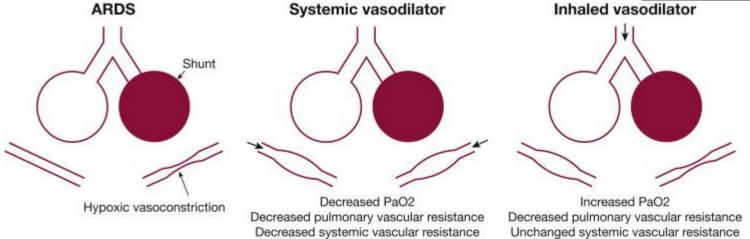

Ventilator Company	Mode
Dräger®	APRV
Servo-i®	Bi-Vent
Puritan Bennett™ 840	Bi-Level
Hamilton	DuoPAP+

1.1.4

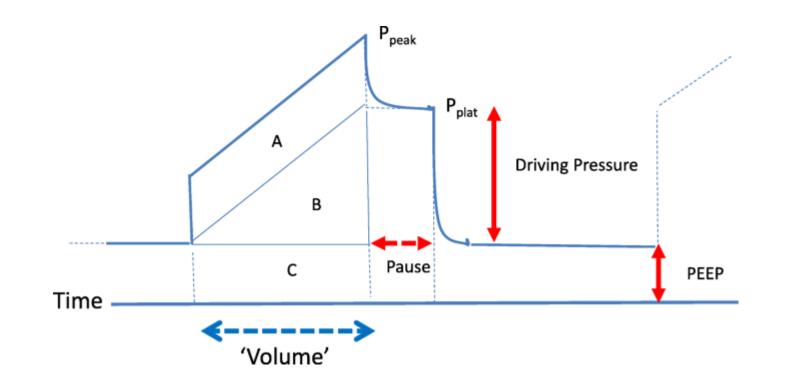
.

. . 1 .


APRV



Inhaled vasodilators


- Nitric oxide
- Prostacyclin
- prostaglandin E1

Driving pressure in ARDS

• Driving pressure is calculated as the difference between plateau pressure and total PEEP

Limiting driving pressure

- Muscle relaxant
- Prone position
- Decreasing instrumental dead space
- Co2 removal
- Veno venus ECMO

NMBA

Neuromuscular Blockers in Early Acute Respiratory Distress Syndrome

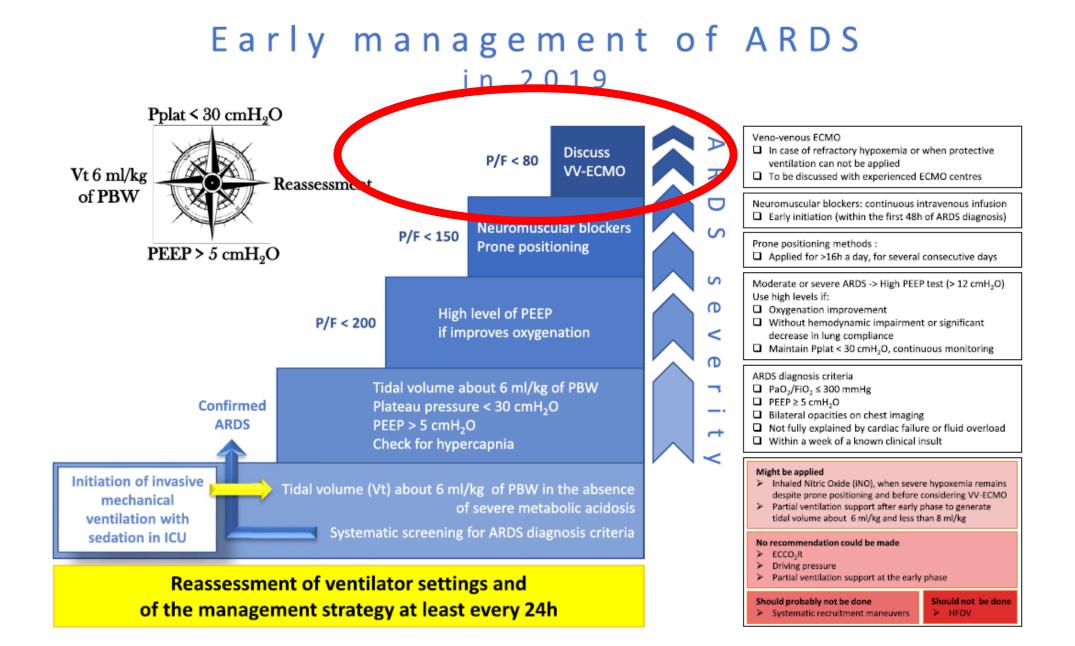
Laurent Papazian, M.D., Ph.D., Jean-Marie Forel, M.D., Arnaud Gacouin, M.D., Christine Penot-Ragon, Pharm.D., Gilles Perrin, M.D., Anderson Loundou, Ph.D., Samir Jaber, M.D., Ph.D., Jean-Michel Arnal, M.D., Didier Perez, M.D., Jean-Marie Seghboyan, M.D., Jean-Michel Constantin, M.D., Ph.D., Pierre Courant, M.D., Jean-Yves Lefrant, M.D., Ph.D., Claude Guérin, M.D., Ph.D., Gwenaël Prat, M.D., Sophie Morange, M.D., and Antoine Roch, M.D., Ph.D., for the ACURASYS Study Investigators*

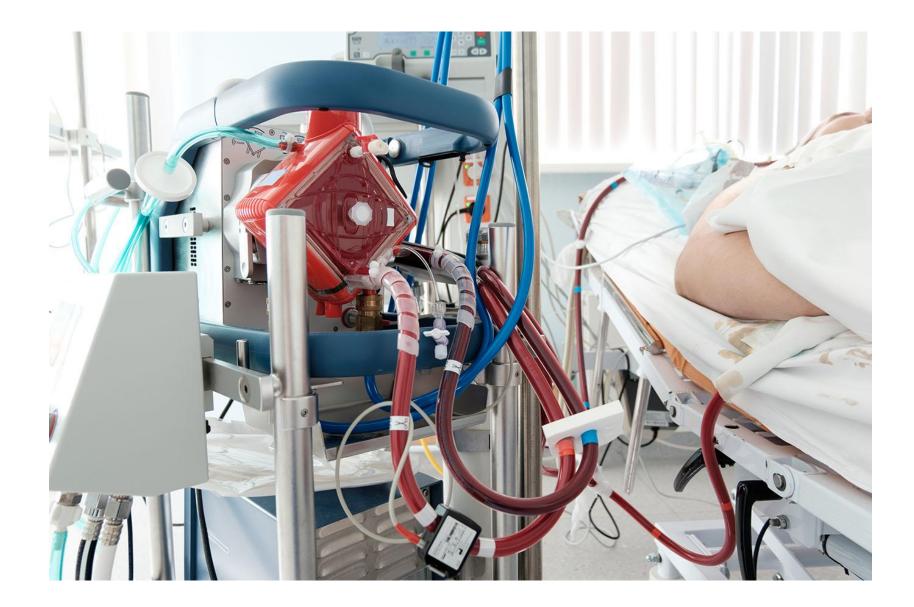
 ConclusionsIn patients with severe ARDS, early administration of a neuromuscular blocking agent improved the adjusted 90-day survival and increased the time off the ventilator without increasing muscle weakness

NMBA

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812


MAY 23, 2019


VOL. 380 NO. 21

Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome

The National Heart, Lung, and Blood Institute PETAL Clinical Trials Network*

 Among patients with moderate-to-severe ARDS who were treated with a strategy involving a high PEEP, there was no significant difference in mortality at 90 days between patients who received an early and continuous cisatracurium infusion and those who were treated with a usual-care approach with lighter sedation targets.

