

ABZUM

Sayed-Hamidreza Mozhgani 🗸

▼ FOLLOWING

Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.

Verified email at razi.tums.ac.ir - Homepage

Epidemiology Virus host cell interaction

TITLE		8 9 9	CITED BY	YEAR
infectio M Zarei (n by HT	genesis factors involved in the progression of ATLL or HAM/TSP after LV-1 through a systems virology study a Emamzadeh, M Teymoori-Rad, SH Mozhgani (1), 1-12		2021
transcri S Shada	i <mark>ptomic (</mark> bi, N Delri:	high-throughput meta-analysis of differentially expressed microRNAs in latasets reveals significant disruption of MAPK/JNK signal transduction sh, M Norouzi, M Ehteshami, F Habibian-Sezavar, nd Cancer 16 (1), 1-10		2021
review E Mahm		obiota-genotype association in inflammatory bowel diseases: a narrative lozhgani, N Sharifinejad (1), 1-9	1	2021
cell leu M Zarei-	<mark>kemia/ly</mark> Ghobadi, 1	nted myelopathy/tropical spastic paraparesis (HAM/TSP) versus adult T-mphoma (ATLL) M Sheikhi, M Teymoori-Rad, S Yaslianifard, M Norouzi, des 14 (1), 1-7		2021

Cited by		VIEW ALL
	All	Since 2016
Citations	304	284
h-index	11	10
i10-index	14	11
		90
	аL	45
2014 2015 2016 2	2017 2018 2019 2	2020 2021 0
Co-authors		EDIT
S.A.R Re Associate	ezaee e Professor of In	nmunovi >
	n ehr Makvandi Indishapur Unive	ersity of >

International Journal of Infectious Diseases 108 (2021) 306-308

Contents lists available at ScienceDirect

International Journal of Infectious Diseases

journal homepage: www.elsevier.com/locate/ijid

Short Communication

Effect of Ammonium Chloride in addition to standard of care in outpatients and hospitalized COVID-19 patients: A randomized clinical trial

Zeinab Siami^a, Sepehr Aghajanian^b, Somayeh Mansouri^b, Zakiye Mokhames^c, Reza Pakzad^{d,e}, Kourosh Kabir^f, Mehdi Norouzi^{g,h}, Alireza Soleimani^a, Mojtaba Hedayat Yaghoobi^a, Shahrzad Shadabi^b, Ramin Tajbakhshⁱ, Ali Kargar Kheirabad^{g,**}, Sayed-Hamidreza Mozhgani^{j,k,*}

Department of Infectious Diseases, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

^b Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran

^c Department of Molecular Diagnostics, Emam Ali Educational and Therapeutic Center, Alborz University of Medical Sciences, Karaj, Iran

^d Department of Epidemiology, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran

^e Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran

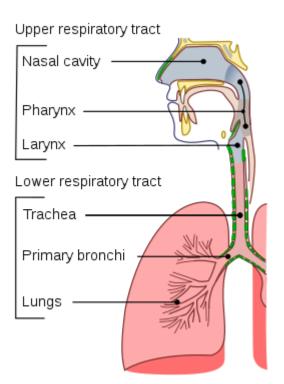
^f Department of Community Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

g Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

h Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran

i Department of Internal Medicine, School of Medicine, Imam Ali Hospital, Alborz University of Medical Sciences, Karaj, Iran

^j Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran


k Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

Introduction

Respiratory tract infections (RTIs) are infectious diseases involving the respiratory tract. An infection of this type usually is further classified as an upper respiratory tract infection (URI or URTI) or a lower respiratory tract infection (LRI or LRTI).

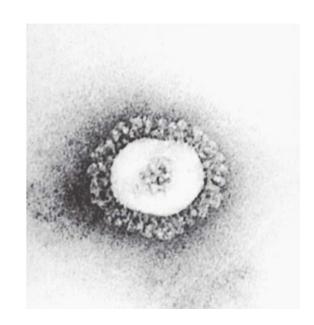
Lower respiratory tract infections are generally more severe than upper respiratory infections. LRIs are the leading cause of death among all infectious diseases.

Introduction

Of the viruses that cause respiratory infections in humans, most have seasonal variation in prevalence.

- Influenza, Human orthopneumovirus (RSV) and human <u>coronaviruses</u> are more prevalent in the winter.
- Adenovirus, Human bocavirus and Human metapneumovirus occur year-round.
- Rhinoviruses (which cause the common cold) occur mostly in the spring and fall.
- · Human parainfluenza viruses have variable peaks depending on the specific strain.
- Enteroviruses, with the exception of rhinoviruses, tend to peak in the summer.

Coronaviridae


Coronaviruses

Coronaviruses are large, enveloped RNA viruses.

The human coronaviruses cause common colds, <u>may cause lower respiratory tract infections</u>.

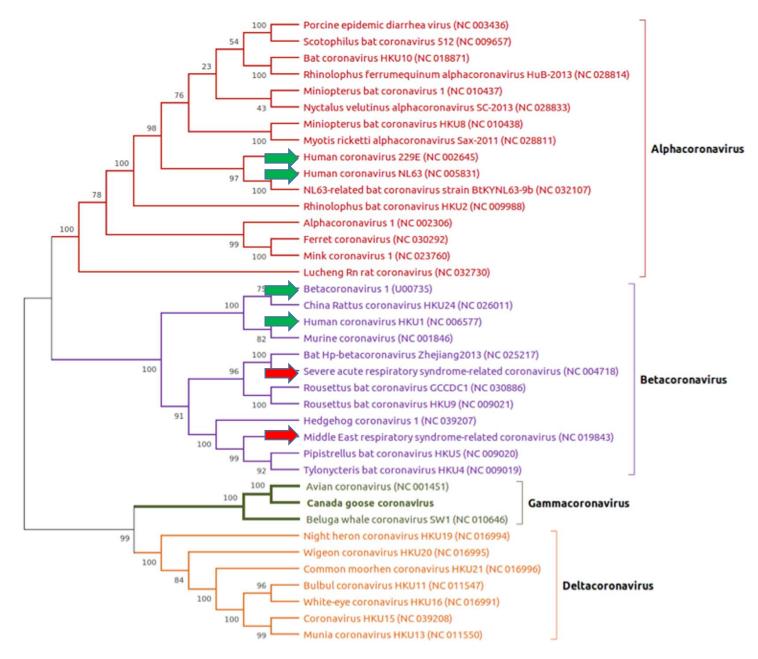
Novel coronaviruses have been identified as the cause of:

- Severe acute respiratory syndrome (SARS 1 & 2)
- Middle East respiratory syndrome (MERS)

Coronaviridae

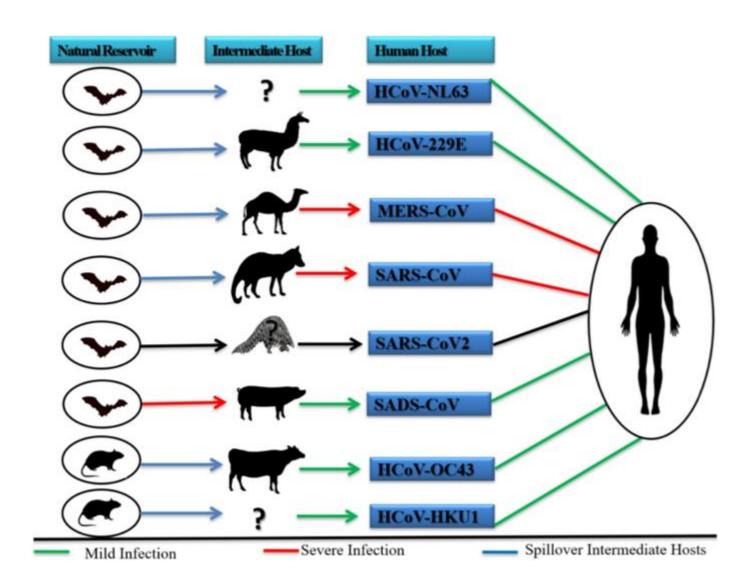
Classification

There are two subfamilies:

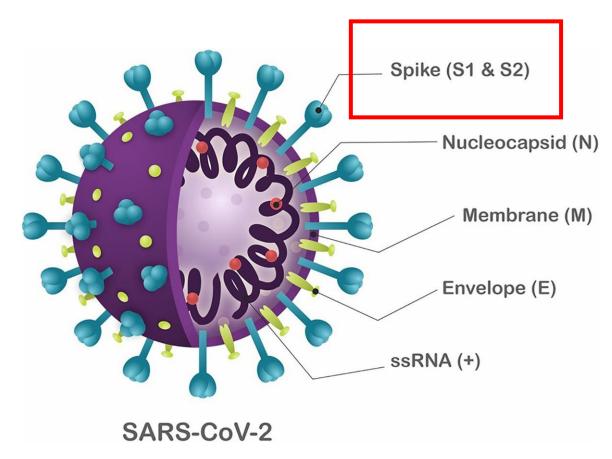

- Coronavirinae
- Torovirinae

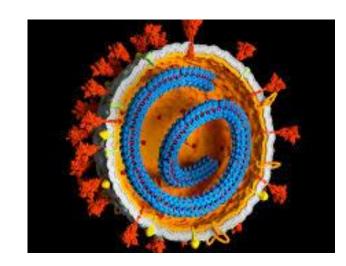
six genera:

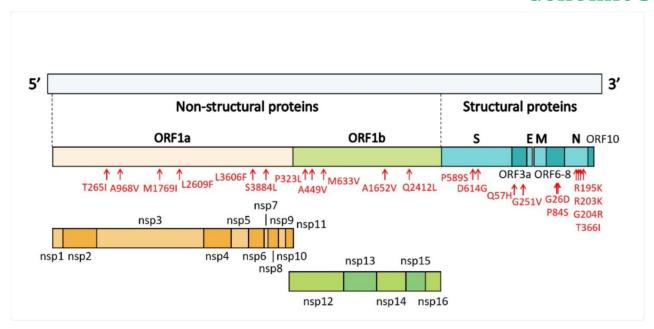
- Alphacoronavirus
- Betacoronavirus
- Gammacoronavirus
- Deltacoronavirus
- Bafinivirus
- Torovirus

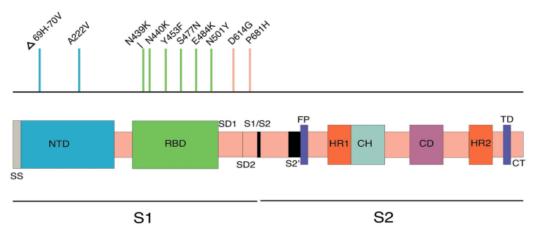

The first two and the last genera contain viruses able to infect humans.

The Toroviruses are associated with diarrheal disease.

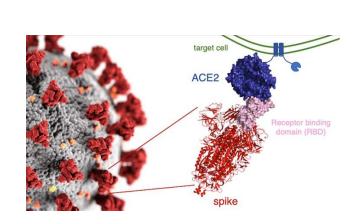


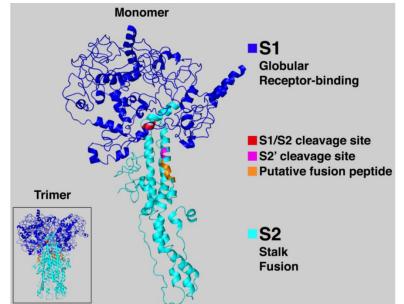

Origin of SARS-CoV-2

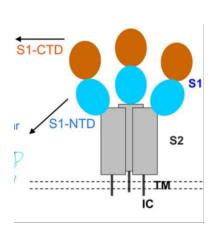


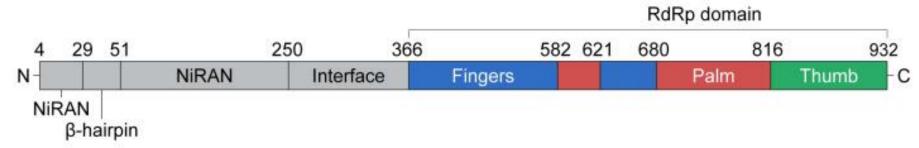


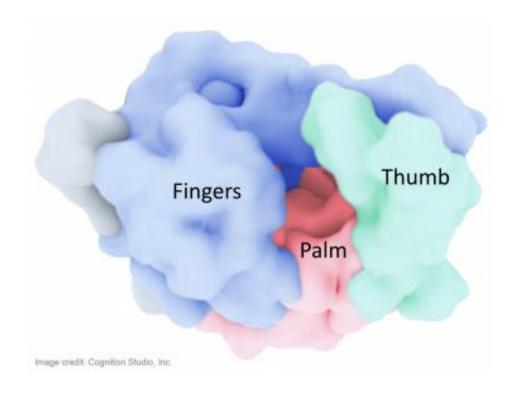
Viral Structure

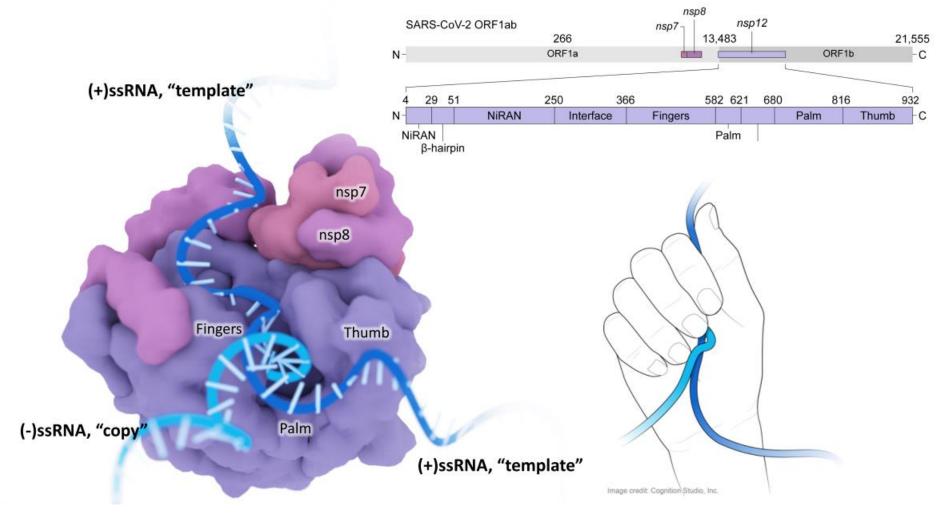


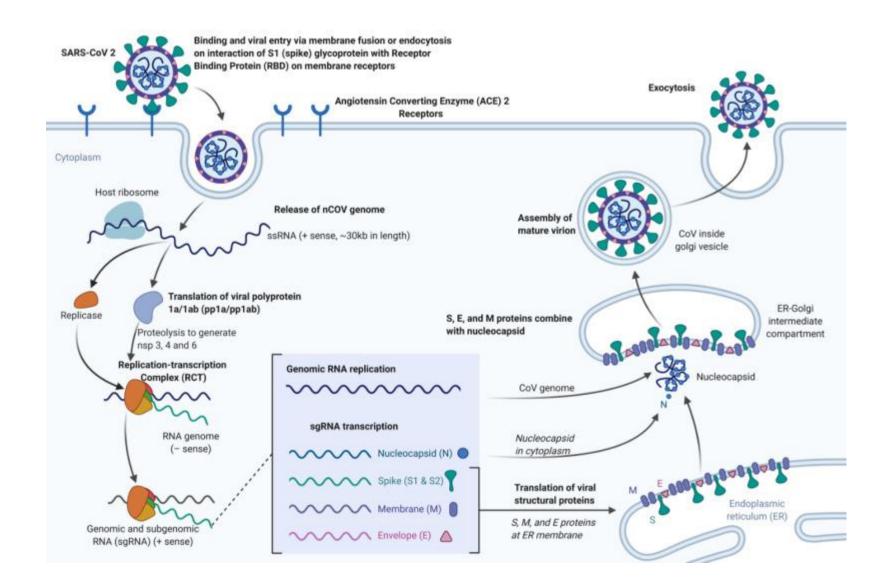




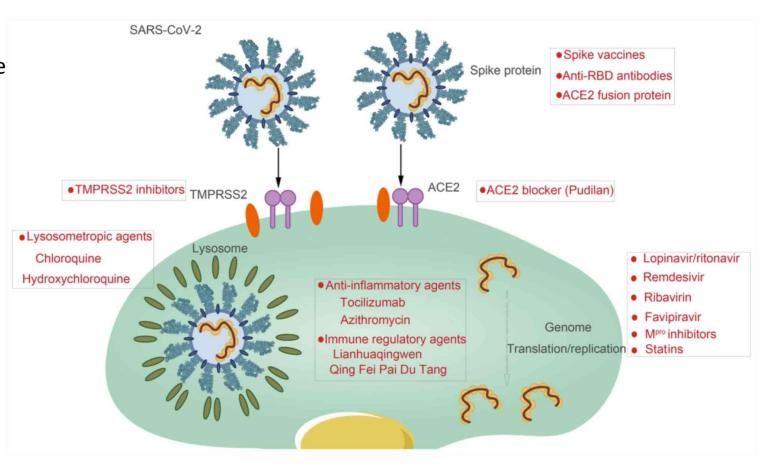

NTD - N-terminal domain RBD - Receptor-binding domain SD - Subdomain S1/S2 - S1-S2 boundary FP - Fusion peptide HR - Heptad repeat CH - Central helix CD - Connector domain TD - Transmembrane domain CT - Cytoplasmic tail



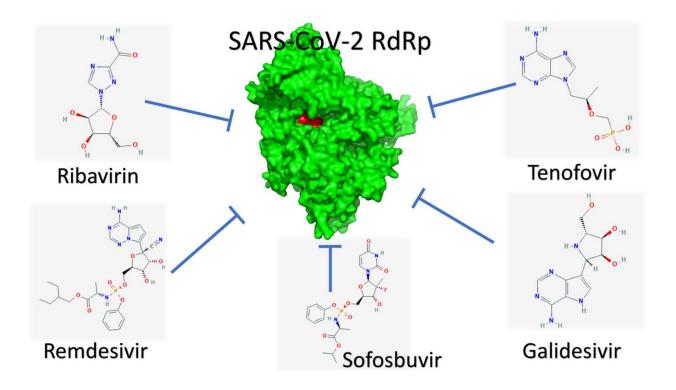




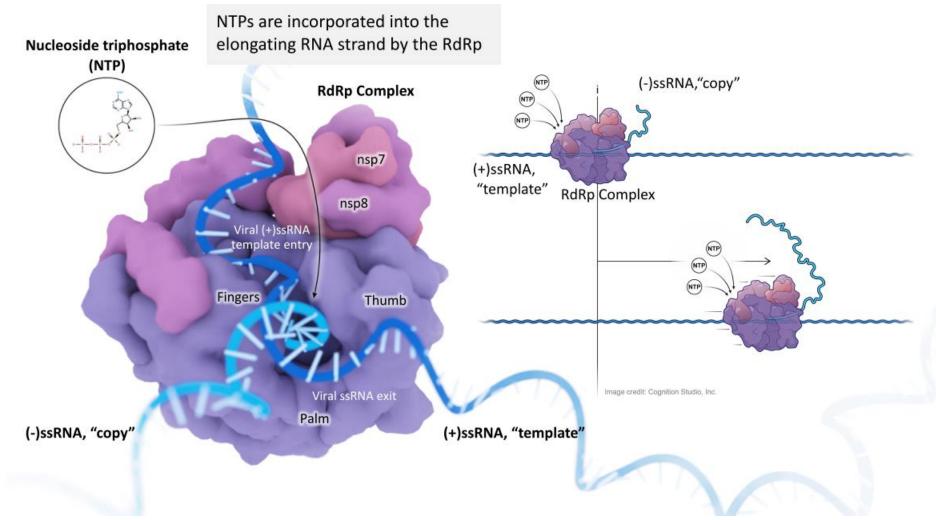
Replication Cycle

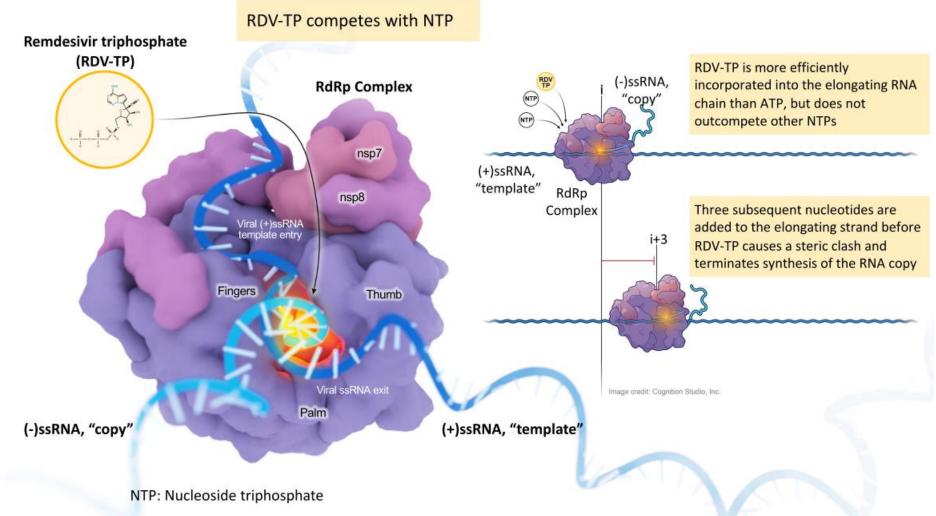


Antiviral Agents


SARS-CoV-2 employs the serine protease TMPRSS2 for S protein priming.

TMPRSS2; transmembrane protease serine




Antiviral Agents

Antiviral Agents

International Journal of Infectious Diseases 108 (2021) 306-308

Contents lists available at ScienceDirect

International Journal of Infectious Diseases

journal homepage: www.elsevier.com/locate/ijid

Short Communication

Effect of Ammonium Chloride in addition to standard of care in outpatients and hospitalized COVID-19 patients: A randomized clinical trial

Zeinab Siami^a, Sepehr Aghajanian^b, Somayeh Mansouri^b, Zakiye Mokhames^c, Reza Pakzad^{d,e}, Kourosh Kabir^f, Mehdi Norouzi^{g,h}, Alireza Soleimani^a, Mojtaba Hedayat Yaghoobi^a, Shahrzad Shadabi^b, Ramin Tajbakhshⁱ, Ali Kargar Kheirabad^{g,**}, Sayed-Hamidreza Mozhgani^{j,k,*}

Department of Infectious Diseases, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

^b Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran

^c Department of Molecular Diagnostics, Emam Ali Educational and Therapeutic Center, Alborz University of Medical Sciences, Karaj, Iran

^d Department of Epidemiology, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran

^e Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran

f Department of Community Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

g Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

h Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran

i Department of Internal Medicine, School of Medicine, Imam Ali Hospital, Alborz University of Medical Sciences, Karaj, Iran

^j Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran

k Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

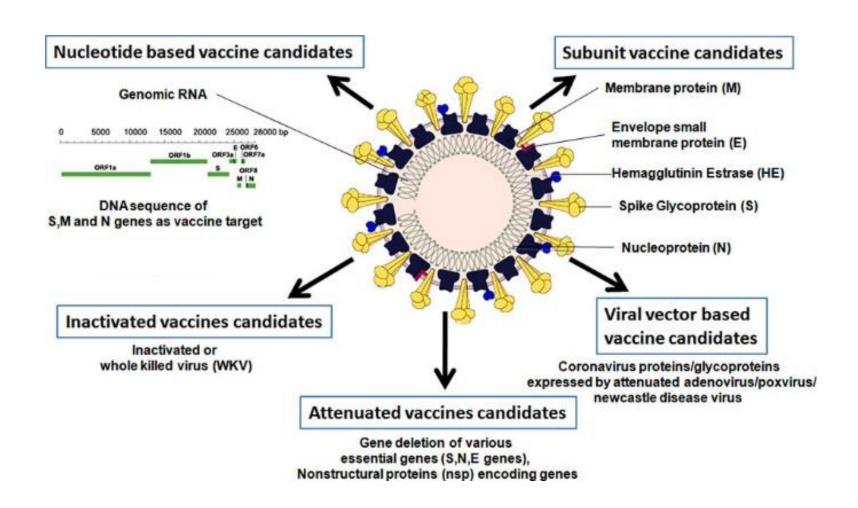
SARS-CoV-2 variants

Amino Acid	3 letter	1 letter
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	\mathbf{C}
Glutamic acid	Glu	${ m E}$
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	I
Leucine	Leu	${ m L}$
Lysine	Lys	K
Methionine	Met	${ m M}$
Phenylalanine	Phe	\mathbf{F}
Proline	Pro	Р
Serine	Ser	\mathbf{S}
Threonine	Thr	${ m T}$
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

SARS-CoV-2 variants

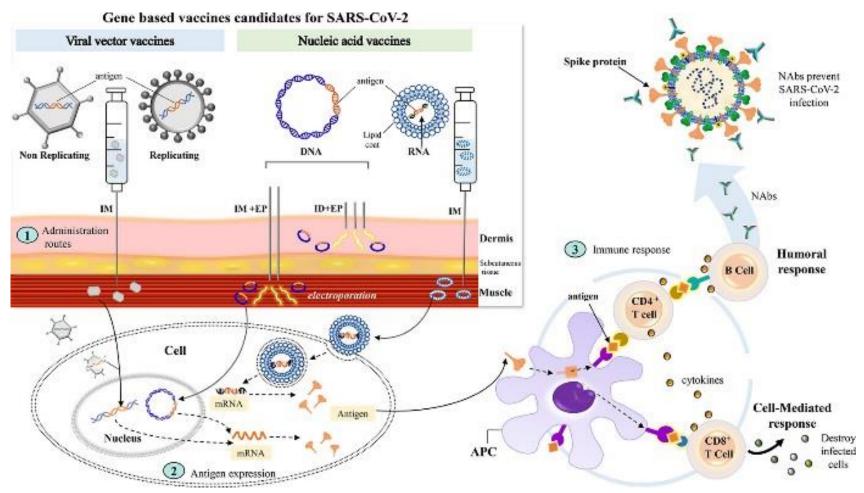
Variants of Concern (VOC)

WHO label	Lineage + additional mutations	Country first detected (community)	Spike mutations of interest	Year and month first detected	Evidence for impact on transmissibility	Evidence for impact on immunity	Evidence for impact on severity	Transmission in EU/EEA
Alpha	B.1.1.7	United Kingdom	N501Y, D614G, P681H	September 2020	Yes (v) (1)	No	Yes (v) (2, 3)	Community
	B.1.1.7+E484K	United Kingdom	E484K, N501Y, D614G, P681H	December 2020	Yes (v) (1)	Yes (v) (4, 5)	Yes (v) (2)	Outbreaks
Beta	B.1.351	South Africa	K417N, E484K, N501Y, D614G, A701V	September 2020	Yes (v) (6)	Yes (v) (7, 8)	Yes (v) (3, 9)	Community
Gamma	P.1	Brazil	K417T, E484K, N501Y, D614G, H655Y	December 2020	Yes (v) (10)	Yes (v) (11)	Yes (v) (3)	Community
Delta	B.1.617.2	India	L452R, T478K, D614G, P681R	December 2020	Yes (v) (12)	Yes (v) (13- 15)	Yes (v) (14, 16)	Dominant


SARS-CoV-2 variants

Variants of Interest (VOI)

WHO label	Lineage + additional mutations	Country first detected (community)	Spike mutations of interest	Year and month first detected	Evidence for impact on transmissibility	Evidence for impact on immunity	Evidence for impact on severity	Transmission in EU/EEA
Eta	B.1.525	Nigeria	E484K, D614G, Q677H	December 2020		Yes (m) (4)		Community
Theta	P.3	The Philippines	E484K, N501Y, D614G, P681H	January 2021	Yes (m) (1)	Yes (m) (4)		Sporadic/Travel
Карра	B.1.617.1	India	L452R, E484Q, D614G, P681R	December 2020	Yes (v) (17)	Yes (v) (18- 21)		Outbreaks
	B.1.620	Unclear (b)	S477N, E484K, D614G, P681H	February 2021		Yes (m) (4, 22)		Outbreaks
	B.1.621	Colombia	R346K, E484K, N501Y, D614G, P681H	January 2021	Yes (m) (1)	Yes (m) (4)		Sporadic/Travel
Lambda	C.37	Peru	L452Q, F490S, D614G	December 2020		Yes (23, 24)		Detected (a)



Vaccination strategies

Vaccination strategies

Vaccination strategies

UNIBIASED COVID-19 Vaccines **HOW DO THEY COMPARE?**

@unbiasedscipod

TECHNOLOGY: mRNA

RNA instructs our cells to produce the SARS-CoV-2 spike protein to trigger an immune response.

EFFICACY: 94.1%

CLINICAL TRIALS: Completed Phase 3. Authorized for use in USA. Canada, U.K., Israel, Switzerland, and EU.

DOSE: 2 doses, 28 days apart. STORAGE: 30 days with refrigeration, 6 months at -20°C.

Pfizer-BioNTech

TECHNOLOGY: mRNA RNA template for the spike protein.

EFFICACY: 95%

CLINICAL TRIALS: Completed Ph3. Authorized/approved in USA, Canada, U.K., Switzerland, Bahrain, Saudia Arabia, EU, Argentina, Chile, Costa Rica, Ecuador, Jordan, Kuwait, Mexico, Panama, and Singapore. DOSE: 2 doses, 21 days apart.

STORAGE: Freezer storage at -70°C. 5 days with refrigeration.

Oxford-

TECHNOLOGY: Viral Vector

A harmless virus is engineered to AstraZeneca contain the gene for the SARS-CoV-2 spike protein

EFFICACY: 62% at the approved dosing scheme.

CLINICAL TRIALS: Completed Phase 3, authorized for use in U.K., Argentina, India (called CoviShield), and Mexico.

DOSE: 2 doses, 4 weeks apart. STORAGE: refrigerated at 2-8° C.

TECHNOLOGY: Inactivated Virus SARS-CoV-2 virus is rendered inert Sinopharm through a chemical process that preserves the structure of the virus. EFFICACY: Reportedly 79.34% (86% in UAE trial); unpublished data. CLINICAL TRIALS: Phase 3 trials are ongoing; authorized/approved in China, United Arab Emirates (UAE), Bahrain, Egypt, and Jordan. DOSE: 2 doses, 3 weeks apart. STORAGE: refrigerated at 2-8° C.

Johnson

TECHNOLOGY: Viral Vector

Johnson & A harmless virus is engineered to contain the gene for the SARS-CoV 2 spike protein

EFFICACY: not vet known **CLINICAL TRIALS:** Completed Phase 2a, expected phase 3 trial data to be released soon.

DOSE: 1- and 2-dose schemes are being tested.

STORAGE: 2 years frozen at -20° C. 3 months refrigerated at 2-8° C.

Gamaleva

TECHNOLOGY: Viral Vector A harmless virus is engineered to contain the gene for the SARS-CoV-

2 spike protein

EFFICACY: Reportedly 91.4% (unpublished data).

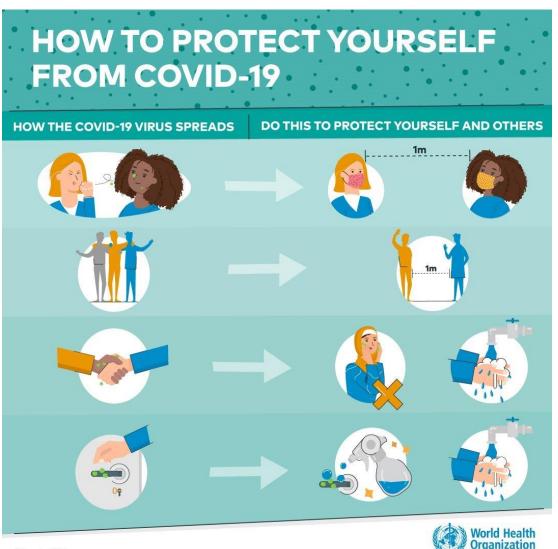
CLINICAL TRIALS: Phase 3 trials are ongoing: authorized for use in Russia, Belarus, Argentina, Algeria, Bolivia, Palestine, and Serbia. DOSE: 2 doses, 3 weeks apart.

STORAGE: Freezer storage (-20°C)

Immunity

As with other respiratory viruses, immunity develops but is not absolute.

Laboratory Diagnosis



Prevention, and Control

Control measures that were effective in stopping the spread of SARS-2 included isolation of patients, quarantine of those who had been exposed, and travel restrictions, as well as the use of gloves, gowns, goggles, and respirators by health care workers.

