

1

Dr. Moridnia

Topic

Real-time Polymerase Chain Reaction

By:

Dr. Abbas Moridnia

Ph.D of Molecular Medicine

2

Dr. Moridnia

Polymerase chain reaction (PCR)

Polymerase chain reaction (PCR) is a technique used in molecular biology to amplify a single copy or a few copies of a segment of DNA across several orders of magnitude, generating thousands to millions of copies of a particular DNA sequence.

It is an easy, cheap, and reliable way to repeatedly replicate a focused segment of DNA, a concept which is applicable to numerous fields in modern biology and related sciences.

Developed in 1983 by Kary Mullis, PCR is now a common and often indispensable technique used in clinical and research laboratories for a broad variety of applications. These include:

- $\checkmark\,$ DNA cloning for sequencing
- ✓ Gene mutagenesis
- ✓ Functional analysis of genes
- ✓ Amplification of ancient DNA
- Detection of pathogens in nucleic acid tests for the diagnosis of infectious diseases.

- ✓ Gene cloning and manipulation
- ✓ Construction of DNA-based phylogenies
- ✓ Diagnosis and monitoring of hereditary diseases
- ✓ Analysis of genetic fingerprints for DNA profiling (forensic science and parentage testing)

Polymerase Chain Reaction (PCR)=DNA Photocopier

DNA amplification

- ✓ In a crime scene, a sample of DNA was found, however amount of DNA was not enough to be analyzed.
- ✓ After DNA extraction, the scientist want to study a specific part of a gene to do sequencing.
- How scientist solve these problem ?

The solution is to do **amplification of parts of DNA**!!

Mainly there are two methods:

Dr. Moridnia

Polymerase Chain Reaction (PCR):

- PCR is a means to amplify a particular piece of DNA.
- ✤ Amplify= making numerous copies of a segment of DNA.
- PCR can make billions of copies of a target sequence of DNA in short time.

It is a laboratory version of DNA Replication in cells.

The laboratory version is commonly called "in vitro" since it occurs in a test tube while "in vivo" signifies occurring in a living cell.

- So...
- \checkmark How the amplification will be done?
- ✓ How you will determine your target sequence?
- ✓ How the amplification will be specific for certain segment?

You must to understand these questions

Amplification of a specific target sequence:

- ✓ PCR does not copy all of the DNA in the sample. It copies only a very specific sequence of genetic code from a template DNA, targeted by PCR primers.
- ✓ It does require the knowledge of some DNA sequence information which flanks the fragment of DNA to be amplified (target DNA).

From this information two synthetic oligonucleotide primers may be chemically

synthesized each complementary to a stretch of DNA to the 3' side of the target

DNA, one oligonucleotide for each of the two DNA strands (DNA polymerase can

add a nucleotide only onto a preexisting 3'-OH group).

(a) PCR primers must bind to sequences on either side of the

12

Principles

- ◆ PCR amplifies a specific region of a DNA strand (the DNA target).
- Most PCR methods amplify DNA fragments of between 0.1 and 10 kbp, although some techniques allow for amplification of fragments up to 40 kbp in size.
- The amount of amplified product is determined by the available substrates in the reaction, which become limiting as the reaction progresses.

Components of PCR

Additional reagents may included

A basic PCR set-up requires several components and reagents, including:

- \checkmark A DNA template that contains the DNA target region to amplify.
- ✓ A DNA polymerase, an enzyme that polymerizes new DNA strands; heat-resistant Taq polymerase is especially common.

- ✓ Two DNA primers that are complementary to the 3' (three prime) ends of each of the sense and anti-sense strands of the DNA target (DNA polymerase can only bind to and elongate from a double-stranded region of DNA; without primers there is no double-stranded initiation site at which the polymerase can bind).
- Deoxynucleoside triphosphates, or dNTPs, the building blocks from which the DNA polymerase synthesizes a new DNA strand.
- ✓ A buffer solution providing a suitable chemical environment for optimum activity and stability of the DNA polymerase.
- ✓ Bivalent cations, typically magnesium (Mg)

Enzyme

✓Usually Taq Polymerase or anyone of the natural or Recombinant thermostable polymerases

✓ Stable at T^0 up to 95^0 C

✓ High processivity

✓ Taq Pol has 5'-3' exo only, no proof reading The thermal cycler heats and cools the reaction tubes to achieve the temperatures required at each step of the reaction. Thin-walled reaction tubes permit favorable thermal conductivity to allow for rapid thermal equilibration. Most thermal cyclers have heated lids to prevent condensation at the top of the reaction tube. Older thermal cyclers lacking a heated lid require a layer of oil on top of the reaction mixture or a ball of wax inside the tube.

Steps of PCR methods:

✓ Initial Denaturation

✓ Denaturation: This step is the first regular cycling event and consists of heating the reaction chamber to 94–95 °C for 20–30 seconds. This causes DNA melting, or denaturation, of the double-stranded DNA template by breaking the hydrogen bonds between complementary bases, yielding two single-stranded DNA molecules.

PCR : Polymerase Chain Reaction

```
30 - 40 cycles of 3 steps :
```

Step 1 : denaturation 1 minut 94 °C Annealing: In the next step, the reaction temperature is lowered to 50–65 °C for 20–40 seconds, allowing annealing of the primers to each of the single-stranded DNA templates.

This temperature must be low enough to allow for hybridization of the primer to the strand, but high enough for the hybridization to be specific, i.e., the primer should bind only to a perfectly complementary part of the strand, and nowhere else. If the temperature is too low, the primer may bind imperfectly. If it is too high, the primer may not bind at all. A typical annealing temperature is about 3–5 °C below the Tm of the primers used.

Extension/elongation: The temperature at this step depends on the DNA polymerase used; the optimum activity temperature for Taq polymerase is approximately 72 °C. In this step, the DNA polymerase synthesizes a new DNA strand complementary to the DNA template strand by adding free dNTPs from the reaction mixture that are complementary to the template in the 5'-to-3' direction, condensing the 5'-phosphate group of the dNTPs with the 3'-hydroxy group at the end of the nascent (elongating) DNA strand.

The precise time required for elongation depends both on the DNA polymerase used and on the length of the DNA target region to amplify. As a rule, at their optimal temperature, most DNA polymerases polymerize a thousand bases per minute. The processes of denaturation, annealing and elongation constitute a single cycle. Multiple cycles are required to amplify the DNA target to millions of copies. The formula used to calculate the number of DNA copies formed after a given number of cycles is 2^n , where n is the number of cycles. Thus, a reaction set for 30 cycles results in 2^{30} , or 1073741824, copies of the original double-stranded DNA target region.

Dr. Moridnia

- Final elongation: This single step is optional, but is performed at a temperature of 72 °C for 5 minutes after the last PCR cycle to ensure that any remaining single-stranded DNA is fully elongated.
- ✓ Final hold: The final step cools the reaction chamber to 4–15 °C for an indefinite time, and may be employed for short-term storage of the PCR products.

Dr. Moridnia

Example:

You want to study a mutation in a DLG3 gene and how it relate to memory:

- 1. Find the sequence of the gene from any website, eg. Ensebmle, NCBI, ...
- 2. Determine your **target region**.

The segment that you want to amplified is in the red square

5' CATGCGATAAGAGTGATTGAGGT CCACCATGTTATCATGCGATAAGAGTGATTGAGGI CCACCATGTTATCATGCGATAAGAGTGATTGAGGT 3' 3' GTACGCTATTCTCACTAACTCCA GGTGGTACAATAGTACGCTATTCTCACTAACTCCA GGTGGTACAATAGTACGCTATTCTCACTAACTCCA 5'

3. Design the primers using primer design tool, eg.Primer3, then send them to any company who will synthesize them.

4. Make sure that the area that you want to study is **between the primers** (the region to be studied should be between the forward and reverse primer).

- 5. Check primer specificity by BLAST.
- 6. Optimize your PCR and trouble shooting.
- 7. Start PCR.

Dr. Moridnia

Dr. Moridnia

30

Dr. Moridnia

Dr. Moridnia

32

Dr. Moridnia

How you will make sure that your target sequence is amplified? It is very important to know your product size, why?

* Our target sequence size is 300 bp

To check whether the PCR successfully generated the anticipated DNA target region, agarose gel electrophoresis may be employed for size separation of the PCR products. The size(s) of PCR products is determined by comparison with a DNA ladder, a molecular weight marker which contains DNA fragments of known size run on the gel alongside the PCR products.

PCR visualizing results

- ✓ After thermal cycling, tubes are taken out of the PCR machine.
- ✓ Contents of tubes are loaded onto an agarose gel.
- $\checkmark\,$ DNA is separated by size using an electric field.
- $\checkmark\,$ DNA is then stained.
- ✓ PCR products are visible as different "bands".

PCR optimization

In practice, PCR can fail for various reasons, in part due to its sensitivity to contamination causing amplification of spurious DNA products. Because of this, a number of techniques and procedures have been developed for optimizing PCR conditions. Contamination with extraneous DNA is addressed with lab protocols and procedures that separate pre-PCR mixtures from potential DNA contaminants.

Primer-design techniques are important in improving PCR product yield and in avoiding the formation of spurious products, and the usage of alternate buffer components or polymerase enzymes can help with amplification of long or otherwise problematic regions of DNA. Addition of reagents, such as formamide, in buffer systems may increase the specificity and yield of PCR.

PCR Advantages

Important advantages of PCR method as a method of non-cell proliferation of genomic material are high speed and sensitivity and ability the production of significant amounts of genetic material is even from small or inappropriate amounts in the cell genome.

limitations

- 1- The need for basic information about the base sequence of the desired part
- 2- Ability to amplify and make small DNA fragments (usually 0.1 to 5 kb fragments)
- 3- Uncertain replication of the target DNA (reported in rare cases)
- 4- Need to post-PCR analysis (Agarose gel)

What is Wrong with Agarose Gels?

- * Poor precision
- * Low sensitivity
- * Short dynamic range <2 logs
- * Low resolution
- * Non automated
- * Size based discrimination only
- * Results are not expressed as numbers
- * Ethidium bromide staining is not very quantitative

Figure 11. Problems associated with end-point detection. Two-step RT-PCR was carried out with the A same amount and different amounts of template RNA. The Y-axis is on a linear scale. M: markers.

Real-time PCR

Dr. Moridnia

Research Plan

- > RNA isolation
- > RNA electrophoresis and cDNA synthesis
- Assessing gene expression
- ✓ Northern Blot
- \checkmark RNase protection
- ✓ Quantitative PCR
- ✓ Quantitative real time RT PCR

RNases are everywhere!

Control of RNases

- ✓ Wear Gloves and Practice Sterile Technique
- ✓ Use Disposable Plastics or Baked Glassware
- ✓ Use chemicals or reagents that will inactive RNases (DEPC treated water, chaotropic agents, etc)
- ✓ Always Keep RNA on ice or frozen
- ✓ Work quickly and carefully

45

RNA electrophoresis

RNA is highly susceptible to intra strand H bonding; such secondary structure will affects its migration through an agarose gel unless it is resolved.

Denaturing Agarose gel electrophoresis

- Two types: 1) Formaldehyde 2) glyoxyl dimethylsulfoxide
- Formamide and formalydehyde are included in loading buffer
- ➤ RNA samples heated at 65°C for 5 minutes prior to electrophoresis

Electrophoresis of RNA

Intact High Quality RNA Characterized by:

- ✓ Two prominent rRNA Bands
- ✓ Slight smear of various sized mRNA molecules in background

Dr. Moridnia

Reverse Transcriptase

A real time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (which is used to amplify and simultaneously detect or quantify a targeted DNA molecule).

Real time PCR monitors the fluorescence emitted during the reaction as an indicator of amplicon production at each PCR cycle (in real time) as opposed to the endpoint detection.

51

Dr. Moridnia

Quenching Process

Name	Excitation Maximum (nm)	Emission Maximum (nm)	Compatible Quencher
Reporter Dye			
6-FAM™	494	515	BHQ®-1, TAMRA
JOE™	520	548	BHQ-1, TAMRA
TET™	521	536	BHQ-1, TAMRA
Cal Fluor [®] Gold 540 ^a	522	541	BHQ-1
HEX™b	535	555	BHQ-1, TAMRA
Cal Fluor Orange 560 ^b	540	561	BHQ-1
TAMRA™	555	576	BHQ-2
Cyanine 3	550	570	BHQ-2
Quasar® 570°	548	566	BHQ-2
Cal Fluor Red 590 ^d	565	588	BHQ-2
ROX™	573	602	BHQ-2
Texas Red®	583	603	BHQ-2
Cyanine 5	651	674	BHQ-3
Quasar 670 ^e	647	667	BHQ-3
Cyanine 5.5	675	694	BHQ-3
^a JOE/TET alternative ^b VIC [®] alternative	^c Cyanine 3 alternative ^d TAMRA alternative		^e Cyanine 5 alternative

Polymerase Chain Reaction

Dr. Moridnia

The Basic of Real time PCR

Baseline: The baseline phase contains all the amplification that is below the level of

detection of the real time instrument.

Threshold: where the threshold and the amplification plot intersect defines CT. Can be set manually/automatically

CT: (cycle threshold) the cycle number where the fluorescence passes the thresholdΔRn: (Rn -baseline)

NTC: no template control

Dr. Moridnia

57

Real time PCR advantages

- * not influenced by non specific amplification
- * amplification can be monitored real time
- * no post PCR processing of products (high throughput, low contamination risk)
- * Ultra rapid cycling (30 minutes to 2 hours)
- * wider dynamic range of up to 10^{10} –fold
- * requirement of 1000 fold less RNA than conventional assays
- * detection is capable down to a 2 fold change
- * confirmation of specific amplification by melting curve analysis
- * most specific, sensitive and reproducible
- * not much more expensive than conventional PCR (except equipment cost)

Applications

- Gene expression analysis
 - Splicing variants
- Diagnosis / viral load
- Mutation analysis

The assay methods

Dr. Moridnia

Real Time Principles

Three general methods for the quantitative assays:

- 1. DNA binding agents (SYBR Green)
- 2 . Hydrolysis probes (TaqMan , Beacons, Scorpions)
- 3 . Hybridization probes (Light Cycler)

DNA binding agents (SYBR Green)

Signal Generation with SYBR ® Green 1 dye

•SYBR ® Green 1 dye binds to the minor groove of ds DNA

•Detects specific and unspecific products

Dr. Moridnia

SYBR Green

1) At the beginning of amplification, the reaction mixture contains the denatured DNA, the primers, and the dye. The unbound dye molecules weakly fluoresce, producing a minimal background fluorescence signal which is subtracted during computer analysis.

2) After annealing of the primers, a few dye molecules can bind to the double strand. DNA binding results in a dramatic increase of the SYBR Green I molecules to emit light upon excitation.

3) During elongation, more and more dye molecules bind to the newly synthesized DNA. If the reaction is monitored continuously, an increase in fluorescence is viewed in real time. Upon denaturation of the DNA for the next heating cycle, the dye molecules are released and the fluorescence signal falls.

Dr. Moridnia

67

Dissociation Curve View

SYBR Green Data Analysis

Dr. Moridnia

SYBR[®] Green 1 dye

When ? Post PCR AnalysisHow ? Gel or Real-Time PCR System

Data Type Derivative

Datactor: SYBR Green

Tm = 77.8 °C

SYBR Green (double stranded DNA binding dye)

- * Emits a strong fluorescent signal upon binding to double stranded DNA
- * Non specific binding is a disadvantage
- * Requires extensive optimization
- * Requires melting point curve determination
- * Longer amplicons create a stronger signal
- * May be multiplexed when coupled with melting curve analysis

When to Choose SYBR Green

* Assays that do not require specificity of probe based assays. Detection of 1000s of molecules.

* General screening of transcripts prior to moving to probe based assays.

* When the PCR system is fully optimized no primer dimers or non specific amplicons, e.g. from genomic DNA.

When Not to Choose SYBR Green

- * Allelic discrimination assays
- * Multiplex reactions
- * Amplification of rare transcripts
- * Low level pathogen detection
Signal Generation with a TaqMan ® Probe

The 5' Nuclease Assay

This method uses 2 principles:

- FRET Technology
- 5' Nuclease Activity of the Taq Polymerase

Dr. Moridnia

TaqMan[®] MGB probes

NFQ: Non-Fluorescent Quencher

 \rightarrow Opens up another window for other reporter dyes

MGB: Minor Groove Binder

 \rightarrow Stabilizes the last 5-6 bp on 3' end

 \rightarrow Shorter and more specific probes for a given Tm

Molecular beacons

Dr. Moridnia

Molecular Beacons

Applications

- Detection of amplification products (real time, end point)
- Multicolor beacons detect multiple targets
- Better detection of single point mutation
- Drug resistance analysis
- Non PCR hybridization analysis (in situ labeling)

Scorpions

Dr. Moridnia

Hybridization probes (Light Cycler)

Dr. Moridnia

Characterization of HSV by melting curve

Dr. Moridnia

Relative Effectiveness of Detection Methods for Common Applications.

Application	SYBR Green I	Dual- Labeled Probes	Molecular Beacons	LightCycler Probes	Scorpions [®] Probes
Mass Screening	XX				
Microarray Validation	XX	Х			
Multiple Target Genes/ Few Samples	Х	Х			
SNP Detection			Х	Х	XX
Allelic Discrimination			Х	Х	XX
Pathogen Detection	Х	Х	Х	Х	XX
Multiplexing		XX	XX	Х	XX
Viral Load Quantification		Х	Х	Х	XX
Gene Expression Analysis	Х	XX	XX	XX	XX
Gene Copy Determination		Х	Х	Х	XX
End-point Genotyping			XX		XX
In vitro Quantification			XX		

Critical concepts and dynamic of reaction

CYCLE NUMBER	AMOUNT OF DNA
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1,024
11	2,048
12	4,096
13	8,192
14	16,384
15	32,768
16	65,536
17	131,072
18	262,144
19	524,288
20	1,048,576
21	2,097,152
22	4,194,304
23	8,388,608
24	16,777,216
25	33,554,432
26	67,108,864
27	134,217,728
28	268,435,456
29	536,870,912
30	1,073,741,824

$N=N_{0}(2)^{n}$

N = Number of DNA molecules after n cycle of amplification N₀= Initial number of DNA molecules

Time Point of PCR Analysis

Dr. Moridnia

 $N = N^{\circ} 2^{n}$ $Log N = Log N^{\circ} + Log 2^{n}$ $Log N = Log N^{\circ} + n Log 2$ $Log N = (Log2)n + Log N^{\circ}$ V = a X + b(For Instance: y= 2x - 4)

logN (Number of product)

Dr. Moridnia

Dr. Moridnia

Dr. Moridnia

96

Full Efficiency

Dr. Moridnia

Effects of efficacy

Dr. Moridnia

CYCLE	AMOUNT OF DNA	AMOUNT OF DNA	AMOUNT OF DNA	AMOUNT OF DNA	
	100% EFFICIENCY	90% EFFICIENCY	80% EFFICIENCY	70% EFFICIENCY	
0	1	1	1	1	
1	2	2	2	2	
2	4	4	3	3	
3	8	7	6	5	
4	16	13	10	8	AFTER 1 CYCLE
5	32	25	19	14	100% = 2.00x
6	64	47	34	24	90% = 1.90v
7	128	89	61	41	50% - 1.50X
8	256	170	110	70	80% = 1.80x
9	512	323	198	119	70% = 1.70x
10	1,024	613	357	202	
11	2,048	1,165	643	343	
12	4,096	2,213	1,157	583	
13	8,192	4,205	2,082	990	
14	16,384	7,990	3,748	1,684	
15	32,768	15,181	6,747	2,862	
16	65,536	28,844	12,144	4,866	
17	131,072	54,804	21,859	8,272	
18	262,144	104,127	39,346	14,063	
19	524,288	197,842	70,824	23,907	
20	1,048,576	375,900	127,482	40,642	AFTER N CYCLES.
21	2,097,152	714,209	229,468	69,092	
22	4,194,304	1,356,998	413,043	117,456	foid increase =
23	8,388,608	2,578,296	743,477	199,676	(efficiency) ⁿ
24	16,777,216	4,898,763	1,338,259	339,449	
25	33,554,432	9,307,650	2,408,866	577,063	
26	67,108,864	17,684,534	4,335,959	981,007	
27	134,217,728	33,600,615	7,804,726	1,667,711	
28	268,435,456	63,841,168	14,048,506	2,835,109	
29	536,870,912	121,298,220	25,287,311	4,819,686	
30	1,073,741,824	230,466,618	45,517,160	8,193,466	

CYCLE	AMOUNT OF DNA	AMOUNT OF DNA	AMOUNT OF DNA	AMOUNT OF DNA
	100% EFFICIENCY	90% EFFICIENCY	80% EFFICIENCY	70% EFFICIENCY
0	1	1	1	1
1	2	2	2	2
2	4	4	3	3
3	8	7	6	5
4	16	13	10	8
5	32	25	19	14
6	64	47	34	24
7	128	89	61	41
8	256	170	110	70
9	512	323	198	119
10	1,024	613	357	202
11	2,048	1,165	643	343
12	4,096	2,213	1,157	583
13	8,192	4,205	2,082	990
14	16,384	7,990	3,748	1,684
15	32,768	15,181	6,747	2,862
16	65,536	28,844	12,144	4,866
17	131,072	54,804	21,859	8,272
18	262,144	104,127	39,346	14,063
19	524,288	197,842	70,824	23,907
20	1,048,576	375,900	127,482	40,642
21	2,097,152	714,209	229,468	69,092
22	4,194,304	1,356,998	413,043	117,456
23	8,388,608	2,578,296	743,477	199,676
24	16,777,216	4,898,763	1,338,259	339,449
25	33,554,432	9,307,650	2,408,866	577,063
26	67,108,864	17,684,534	4,335,959	981,007
27	134,217,728	33,600,615	7,804,726	1,667,711
28	268,435,456	63,841,168	14,048,506	2,835,109
29	536,870,912	121,298,220	25,287,311	4,819,686
30	1,073,741,824	230,466,618	45,517,160	8,193,466

Dr. Moridnia

From Fluorescence to Results Step 2 "Comparison" of Ct Values

Dr. Moridnia

Dr. Moridnia

Linear curve and efficacy

Dr. Moridnia

Dr. Moridnia

Calculation of real-time PCR efficiency

 $E = 10^{-1/slope} => E = 10^{-1/-3.337} => E = 10^{0.299} => E = 1.99$

Roche Diagnostics, LC rel. Quantification software, March 2001

Rasmussen, R (2001) Quantification on the LightCycler. In: Meuer, S, Wittwer, C, Nakagawara, K, eds. Rapid Cycle Real-time PCR, Methods and Applications Springer Press, Heidelberg; page 21-34
Calculation of real-time PCR efficiency

Full Efficiency

y = x (1+E)ⁿ

If PCR efficiency is 1, the equation becomes

y = Number of PCR productsx = Initial target copy numberE = Efficiencyn = Number of PCR cycles

Full Efficiency

Dr. Moridnia

Full Efficiency

10-fold dilution series

- Most sensitive
- Can discriminate closely related mRNAs
- Technically simple
- But difficult to get truly quantitative results using conventional PCR

Dr. Moridnia

	Gene symbol		Relative expression level*	
Gene	Human	Mouse	Human	Mouse
18S ribosomal RNA	RRN18S	Rn18s	++++	++++
Actin, beta	ACTB	Actb	+++	+++
Glyceraldehyde-3-phosphate dehydrogenase	GAPDH	Gapdh	+++	+++
Phosphoglycerate kinase 1	PGK1	Pgk1	+++	++
Peptidylprolyl isomerase A	PPIA	Ppia	+++	+++
Ribosomal protein L13a	RPL13A	Rpl13a	+++	+++
Ribosomal protein, large, PO	RPLPO		+++	
Acidic ribosomal phosphoprotein PO		Arbp		+++
Beta-2-microglobulin	B2M	B2m	++ - +++	++ - +++
Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide	YWHAZ	Ywhaz	++ - +++	+
Succinate dehydrogenase complex, subunit A, flavoprotein (Fp)	SDHA	Sdha	++	+
Transferrin receptor	TFRC	Tfrc	++	+
Aminolevulinate, delta-, synthase 1	ALAS1	Alas 1	+	+
Glucuronidase, beta	GUSB	Gusb	+	+
Hydroxymethylbilane synthase	HMBS	Hmbs	+	++ - +++
Hypoxanthine phosphoribosyltransferase 1	HPRT1	Hprt1	+	+
TATA box binding protein	TBP	Тьр	+	+
Tubulin, beta	TUBB		+	
Tubulin, beta 4		Tubb4		+

Table 7. Housekeeping genes commonly used as endogenous references

* "+" indicates relative abundance of the transcripts.

Dr. Moridnia

Pfaffl method

–M.W. Pfaffl, Nucleic Acids Research 2001 29:2002-2007

Dr. Moridnia

Pfaffl method

Dr. Moridnia

Dr. Moridnia

$$N = No (2)^{n} \rightarrow N_{1} = N_{2} \rightarrow No_{1}(2)^{n1} = No_{2} (2)^{n2}$$

$$\frac{No_{1}}{No_{2}} = \frac{(2)^{n2}}{(2)^{n1}} \rightarrow \frac{No_{1}}{No_{2}} = (2)^{n2 - n1} \rightarrow \frac{No_{1}}{No_{2}} = (2)^{\Delta ct}$$

$$\Rightarrow \frac{No_{1}}{No_{2}} = (1 + E)^{\Delta ct}$$

.....

Dr. Moridnia

AFTER N CYCLES: ratio vit/con = (1.93)^{29.63-18.03} = 1.93^{11.60} = 2053

Dr. Moridnia

AFTER N CYCLES: ratio vit/con = (1.87)^{19.93-19.80} = 1.87^{0.13} = 1.08

ratio = <u>change in IL1-B</u> = 2053/1.08 = 1901 change in RPLP0

ratio = $(E_{target})^{\Delta Ct target (control-treated)}$ $(E_{ref})^{\Delta Ct ref (control-treated)}$

Dr. Moridnia

$2^{\Delta\Delta ct}$ efficiency method

Dr. Moridnia

Dr. Moridnia

 $\Delta\Delta$ Ct = 11.40 for IL 1 beta

 $2^{\Delta\Delta ct}$ variant: assumes efficiency is 100 % Fold change = $2^{11/40}$ = 2702 But our efficiency for IL 1 beta is 93% Fold change = $1/93^{11/40}$ = 1800

Pfaffl equation corrected for RPLP 0 efficiency

Fold change = 1901

Dr. Moridnia

Relative Quantification

- \succ No standard curve
- Calculation of results by comparison of Ct values
 "Comparative Ct method"
- > Definition of:
- ✓ Endogenous Control
- ✓ Calibrator

Endogenous Control (EC)

- > The perfect EC reflects the amount of cDNA per well
- EC has a constant expression level in all samples which are used in that study
- > The EC normalizes for
- ✓ RNA input measurement errors
- \checkmark RT efficiency variations

Calibrator

Calibrator

Comparison of Target Gene and Endogenous Control

Dr. Moridnia

Dr. Moridnia

Comparative Ct Method

Comparative Ct Method step 1: Normalization to endogenous control Ct Target gene – Ct Endogenous control = Δ Ct step 2: Normalization to calibrator sample

 ΔCt Sample $-\Delta Ct$ Calibrator = $\Delta \Delta Ct$

step 3: use the formula $2^{-\Delta\Delta Ct}$

Relative Quantification Result

Dr. Moridnia

Exercise 1

 Brain
 18S rRNA
 Ct 14

 IL-10
 Ct 32

 Liver
 18S rRNA
 Ct 16

 IL-10
 Ct 29

Which cDNA is higher concentrated, and how many times higher?

Brain, 4 times higher (2²)

Exercise 2

18S rRNA Ct 14 Brain Ct 32 IL-10 (Calibrator) 18S rRNA Ct 16 Liver IL-10 Ct 29 How does the expression of IL-10 differ in Liver and Brain? Δ Ct Brain = 18 $\Delta Ct Liver = 13 \rightarrow 13 - 18 = -5 \rightarrow 2^5 = 32$ IL-10 is 32-times higher expressed in Liver!

Definition & terminology

Term	Definition		
Baseline	The initial cycles of PCR in which there is little change in fluorescence signal.		
Threshold	A level of delta R_n -automatically determined by the software or manually set-used for C_T determination in real-time assays. The level is set to be above the baseline and sufficiently low to be within the exponential growth region of the amplification curve. The threshold is the line whose intersection with the Amplification plot defines the C_T .		
Threshold cycle (C _T)	The fractional cycle number at which the fluorescence passes the threshold.		
No template control (NTC)	A sample that does not contain template. It is used to verify amplification quality.		
Nucleic acid target (also called "template")	Nucleotide sequence that you want to detect and quantitate.		
Passive reference	A dye that provides an internal fluorescence reference to which the reporter dye signal can be normalized during data analysis. Normalization is necessary to correct for fluorescence fluctuations caused by changes in concentration or in volume.		
Reporter dye	The dye attached to the 5' end of a TaqMan [®] probe. The dye provides a fluorescence signal that indicates specific amplification.		
Normalized reporter (R _n)	The ratio of the fluorescence emission intensity of the reporter dye to the fluorescence emission intensity of the passive reference dye.		
Delta $R_n (\Delta R_n)$	The magnitude of the signal generated by the specified set of PCR conditions. ($\Delta R_n = R_n - baseline$)		
Standard	A sample of known quantity used to construct a standard curve.		
Unknown sample	A sample containing an unknown quantity of template that you want to characterize.		

Dr. Moridnia