Osteoporosis pathophysiology

Dr Arash Aris
Orthopaedic surgeon
Assistant professor of GUMS

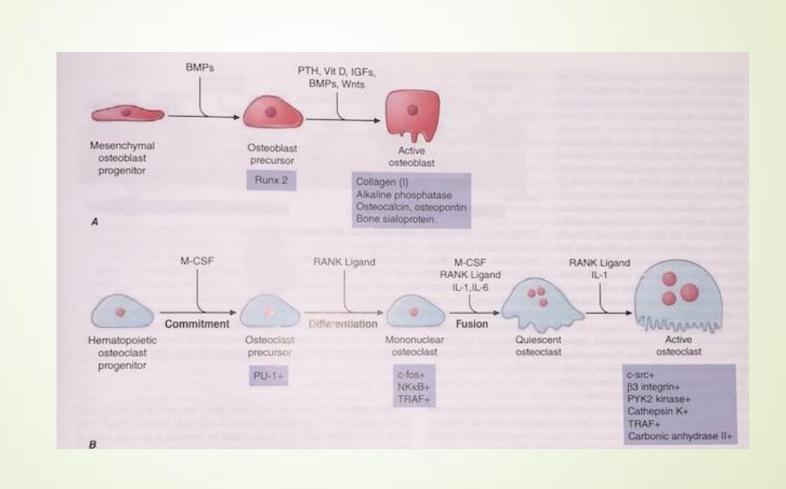
Dynamic tissueosteoblastsosteoclasts

Extracellular matrix:

sold mineral phase + organic matrix(90-95% type 1 collagen)

Non collagenous: organic matrix (serum proteins + local proteins)

Local proteins → attachment / signaling proteins:


thrombospondin-osteopontin-fibronectin-calcium binding proteins (gla Prosteocalcin)

Mineral: ca / phosphate

■ Osteocyte → FGF-23

mineralization (primary-secondary)
osteoblast derived alkaline phosphatase

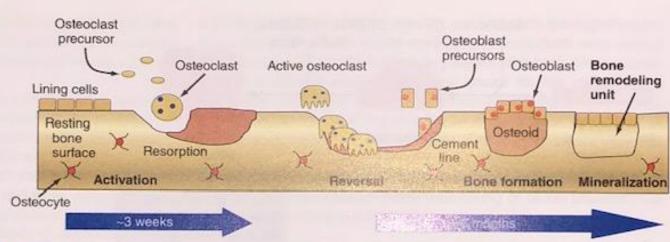


FIGURE 423-2 Schematic representation of bone remodeling. The cycle of bone remodeling is carried out by the basic multicellular unit (BMU), which consists of a group of osteoclasts and osteoblasts. In cortical bone, the BMUs tunnel through the tissue, whereas in cancellous bone, they move across the trabecular surface. The process of bone remodeling is initiated by contraction of the lining cells and the recruitment of osteoclast precursors. These precursors fuse to form multinucleated, active osteoclasts that mediate bone resorption. Osteoclasts adhere to bone and subsequently remove it by acidification and proteolytic digestion. As the BMU advances, osteoclasts leave the resorption site and osteoblasts move in to cover the excavated area and begin the process of new bone formation by secreting osteoid, which eventually is mineralized into new bone. After osteoid mineralization, osteoblasts flatten and form a layer of lining cells over new bone.

Genetic factors:

sex hormones (during puberty)

nutrition and life style

Heritability: 50-80% for bone density and size (basis of twin studies)

growth hormone, glococorticoids, Estrogen

Vit D receptor, type 1 collagen, estrogen receptor (ER), IL-6, IGF-1

Locus on chromosome11 → high bone mass

Point mutation in LRP5 (low density receptor protein) → osteoporosispseudoglioma syndrome

Runx2 : osterix,osteopontin,bone sialoprotein,collagen 1,osteocalcin, RANK

Ihh (indian hegdehoge)

1,25[OH]2D / PTH/ IGFs I-II / TGF-a2 / FGFs 2,18 / PDGF

Bone resorption:

Osteoclasts

M-CSF: fusion of osteoclast progenitors

TNF / RANK / osteoprotegrin (OPG) / IL-1-6-11 / Inf λ

Calcitonin → osteoclast activity inhibitor (direct)

PTH / 1,25 [OH]2 vitD → numbers and activity (indirect)

Estradiol → bone resorption

Osteoblast bone dependent bone resorption :

Hawship lacunae

solubilize mineral phase

proton, chloride, proteinase (extracellular lysosome)

Enchondral bone formation
 chondrocyte proliferation→ secrete and mineralize bone matrix →
 hypertrophy → cell death → bone enlargement → more bone formation

Intramembranous bone formation

Osteoporosis

Definition

T-score <-2.5

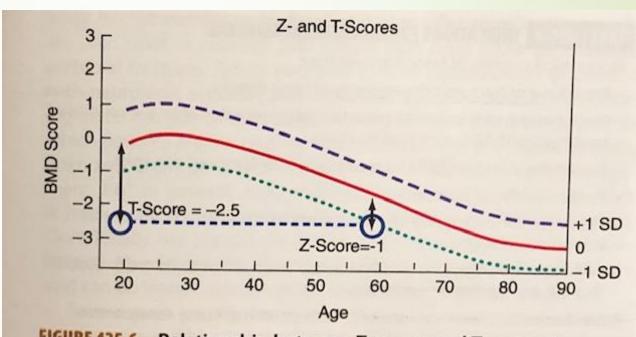
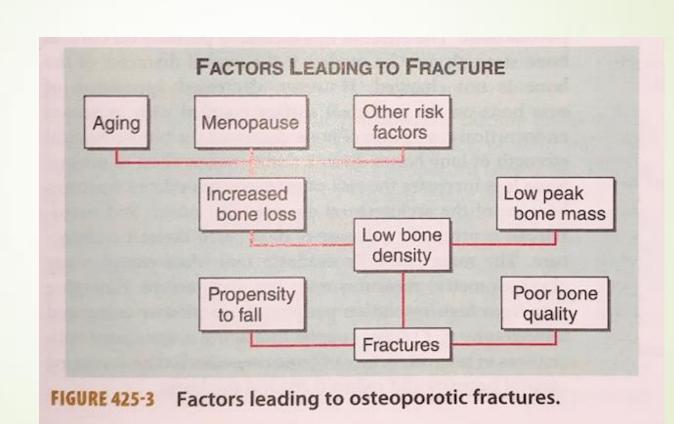
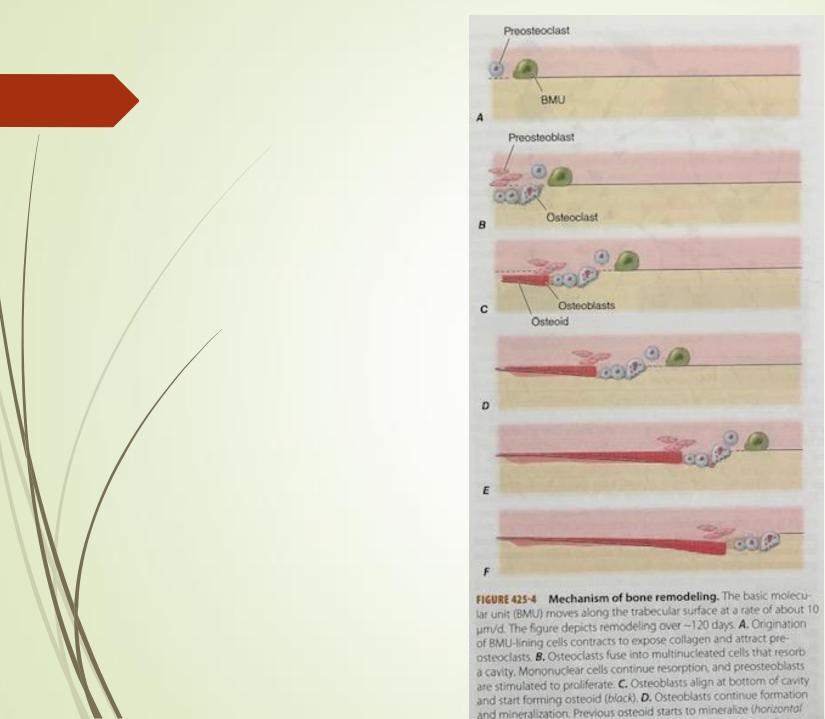



FIGURE 425-6 Relationship between Z-scores and T-scores in a 60-year-old woman. BMD, bone mineral density; SD, standard deviation.


Bone remodeling :

1- repair of microdamage

2- supply calcium

Acute demand of calcium

Chronic demand of calcium

Circulating hormones:

PTH, estrogens, and rogens, vitD

+

local growth factors:

IGF-1, IGH-II, TGF-β, PTHrP, IIs, prostaglandins, TNFs

RANKL receptor activator of nuclear factor k ligand

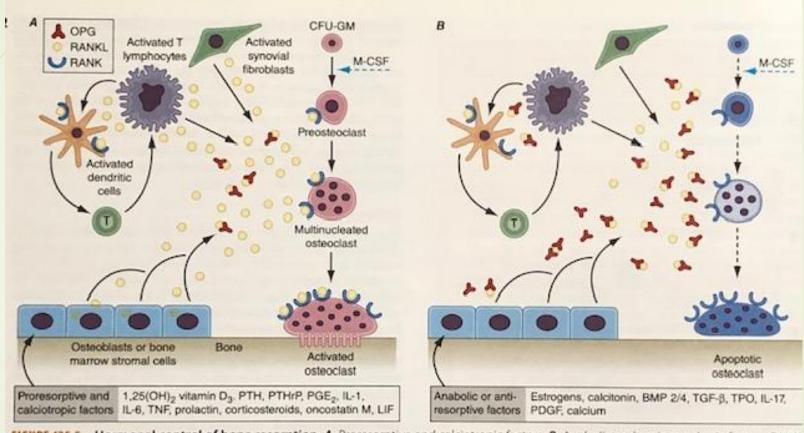
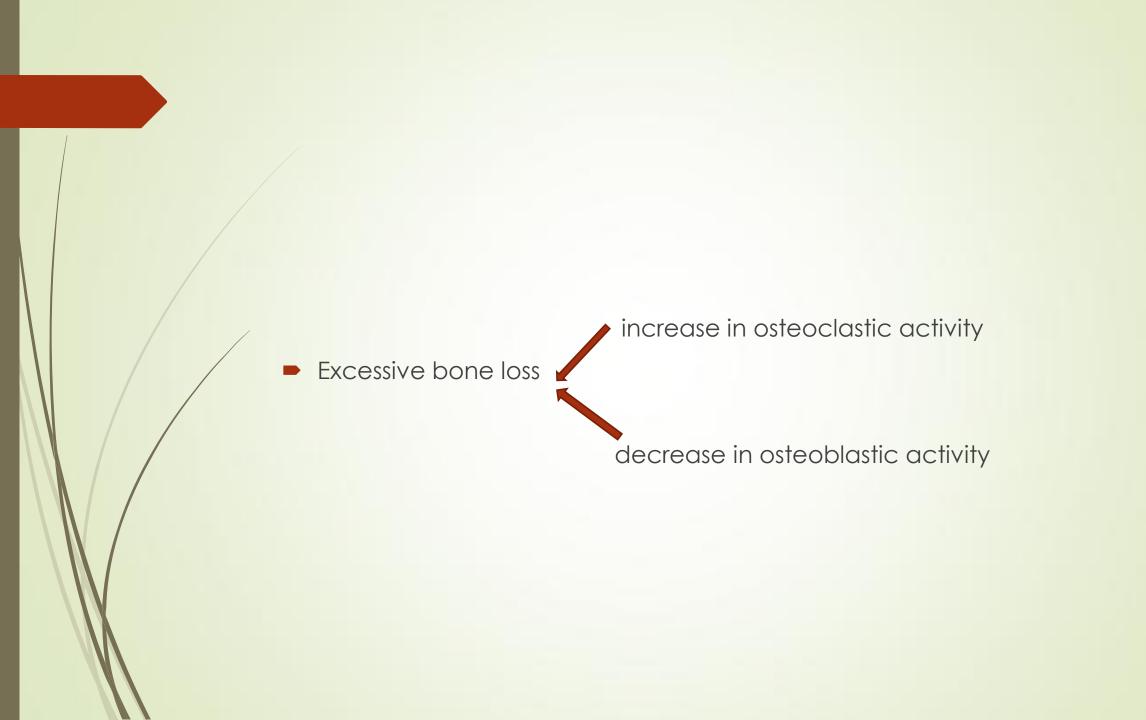



FIGURE 425-5 Hormonal control of bone resorption. A. Proresorptive and calciotropic factors. B. Anabolic and antiosteoclastic factors. RANK ligand (RANKL) expression is induced in osteoblasts, activated T cells, synovial fibroblasts, and bone marrow stromal cells. It binds to membrane bound receptor RANK to promote osteoclast differentiation, activation, and survival. Conversely, osteoprotegerin (OPG) expression is induced by factors that block bone catabolism and promote anabolic effects. OPG binds and neutralizes RANKL, leading to a block in osteoclastogenesis and decreased survival of preexisting osteoclasts. CFU-GM, colony-forming units, granulocyte macrophage; IL, interleukin; LIF, leukemia inhibitory factor; M-CSF, macrophage colony-stimulating factor; OPG-L, osteoprotegerin-ligand; PDGF, platelet-derived growth factor; PGE, prostaglandin E, PTH, parathyroid hormone; RANKL, receptor activator of nuclear factor nuclear factor-kB; TGF-β, transforming growth factor β; TNF, tumor necrosis factor; TPO, thrombospondin. (From W.) Boyle et al: Nature 423: 337, 2003.)

In young adults , resorbed bone is replaced by an equal amount of new bone tissue

 After age 30-45 the resorption and formation processes become imbalanced

Resorption exceeds formation

Increased recruitment of bone remodeling :

trabecular bone: impaired cancellous connectivity

cortical bone: increased porosity of bone

Calcium nutrition: 1200 mg/day

Vit D: optimum level: 30ng/mL colorectal/prostate/breast CA autoimmune disease diabetes

Estrogen status :

- 1- activating of new bone remodeling sites
- 2- exaggeration of the imbalance between bone formation and resorption

Post menopause:

Estrogen → RANKL → Production of OPG

Controlling the rate of apoptosis

longevity and activity of osteoclasts

The most common site of fracture: trabecular bone (vertebrae)

Physical activity:

during growth, before the age of puberty → higher bone mass

Chronic diseases :

genetic or acquired

multifactorial

Medications:

glucocorticoids
thyroid hormone
anticonvulsants
immunosuppressants
aromatase inhibitors
SSRI

PPI

Thiasolidinedions

Cigarette smoking:

direct

indirect

secondary effects:

intercurent respiratory

frailty

decreased exercise/poor nutrition / need of additionbal medications

