Postpartum hemorrhage

By: Dr Kambiz Sadegi

Anesthesiologist & Interventional pain fellowship
Assistant professor ZBMU

	Class of haemorrhagic shock				
	1	11	III	IV.	
Blood loss (mL)	Up to 750	750-1500	1500-2000	> 2000	
Blood loss (% blood volume)	Up to 15	15-30	30-40	>40	
Pulse rate (per minute)	< 100	100-120	120-140	> 140	
Blood pressure	Normal	Normal	Decreased	Decreased	
Pulse pressure (mm Hg)	Normal or increased	Decreased	Decreased	Decreased	
Respiratory rate (per minute)	14-20	20-30	30-40	> 35	
Urine output (mL/hour)	> 30	20-30	5–15	Negligible	
Central nervous system/ mental status	Slightly anxious	Mildly anxious	Anxious, confused	Confused, lethargic	

Table 2. Clinical Findings in Obstetric Hemorrhage [25] (Open Table in a new window)

Blood Volume Loss	Blood Pressure (systolic)	Symptoms and Signs	Degree of Shock	
500-1000 mL (10-15%)	Normal	Palpitations, tachycardia, dizziness	Compensate	
1000-1500 mL (15-25%)	Slight fall (80- 100 mm Hg)	Weakness, tachycardia, sweating	Mild	
1500-2000 mL (25-35%)	Moderate fall (70-80 mm Hg)	Restlessness, pallor, oliguria		
2000-3000 mL (35-50%)	Marked fall (50- 70 mm Hg)	Collapse, air hunger, anuria	Severe	

- HR & BP \rightarrow two most commonly used V/S \rightarrow Dx hemorrhage
- women \rightarrow hemorrhage may not develop tachycardia or hypotension until significant blood loss (>1,000 mL)
- Signs of a hemorrhage : HR >110 beats/ minute

```
BP \le 85/45 \text{ mm Hg}
Spo2 < 95\%
delayed \text{ capillary refi ll}
U/O \downarrow
pallor
```

ratio of the heart rate over the systolic BP (HR/Sbp) is called : shock index and may be helpful

A shock index *greater than 1* requires immediate managemen

(lightheadedness, palpitations, confusion, syncope, fatigue, air hunger, and diaphoresis)

1- blood loss (vaginal del > 500 cc or C/S > 1000cc & normal V/S)

- angiocath (16 or 18)
- 3.5 lit (maximally) crystalloids
- O2 therapy:

Mask: 6-8 lit/min, cannula: 2-4 lit/min

 $NS \rightarrow reasonable solution in the labor ward setting because: (1)low cost (2) compatibility with most drugs and blood transfusions$

(If large amounts (>10 L) of crystalloid are being infused, a change to LRS can be considered)

Dextrose-containing solutions, such as 5% dextrose in water or diluted NS in 5% dextrose in water, have no role in the management of PPH. Remember that the loss of 1 L of blood requires replacement with 4-5 L of crystalloid because most of the infused fluid is not retained in the intravascular space but instead shifts to the interstitial space.

Continue Blood loss(1000-1500cc) & Normal V/S & Normal Labtest:

- second IV line \rightarrow 16 or 18 (if not available \rightarrow cv-line)
- invasive monitoring? If necessary
- u/o
- PPH of up to 1500 mL in a healthy pregnant woman \rightarrow usually be managed \rightarrow crystalloid infusion alone if the cause of bleeding is arrested
- * A meta-analysis in the Cochrane Library comparing resuscitation with colloid solutions versus crystalloid <u>favored the</u> <u>use of crystalloids</u> with respect to mortality
- *The NS groups had a 1% mortality rate, versus an 11% mortality rate in the colloid group
- * Large volumes of colloid solutions (>1000-1500 mL/d) can \rightarrow adverse effect on hemostasis

No colloid solution has been demonstrated to be superior to NS

expense and the risk of adverse effects with colloids, crystalloid is recommended

Given these findings \rightarrow the authors recommend *agains*t the use of colloid solutions in resuscitation outside the setting of an RCT

Continue bood loss(> 1500 cc) or transfusion >2u packed cell or coagulopathy or abnormal lab test or oliguria:

- Newer studies tend to have lower transfusion rates than older studies
- to OPERATING ROOM, TXA
- Ca, inotrope

Cardiovascular collapse(severe hemorrhage, hypovolemic shock amniotic emboli)

massive transfusion:

- 1-PC > 10 U / 24h
- 2- replacement > 1 blood volume /24 h
- 3- replacement > 50% in 4 h (2h) (adult blood volume = 70 ml/kg)
- $4- \ge 150 \text{ ml /min}$
- goal:
- * maintain tissue perfusion & oxygenation
- * stop bleeding to use surgical or other intervention

 Check these parameters early and frequently (e.g. every 30-60 minutes while massive transfusion is ongoing)

Parameters	Values to aim for
Temperature	>35 °C
Acid-base status	pH >7.2, base excess <-6, lactate <4 mmol/L
lonised calcium (Ca)	>1.1 mmol/L
Haemoglobin (Hb)	This should not be used alone as transfusion trigger; and, should be interpreted in context with haemodynamic status, organ & tissue perfusion
Platelet (Plt)	≥ 50 x 10^9 /L (>100 x 10^9 if head injury/ intracranial haemorrhage)
PT/APTT	≤ 1.5x of normal
Fibrinogen	≥ 1.0 g/L

First:

- 1- system activity
- 2- CBC, PT, PTT, INR, fibrinogen, ABG
- 3- TXA 1g Qh8
- 4- warming the patients
- 5- preparing 4 *U* packed cell:
- * compatible type screen or partially cross-match
- * O –
- *O + if Rh +

Second:

- $\blacksquare 4u(PC)$, 4u(FFP), 1u(PltSD) or 10u(RD)
- Lab test every 30 -60 min
- 1g calcium
- if Fibrinogen < 100 mg/dl → cryopersipitate
- Platelet & cryoprecipitate (preferably compatible unless except in emergencies)

Thirth

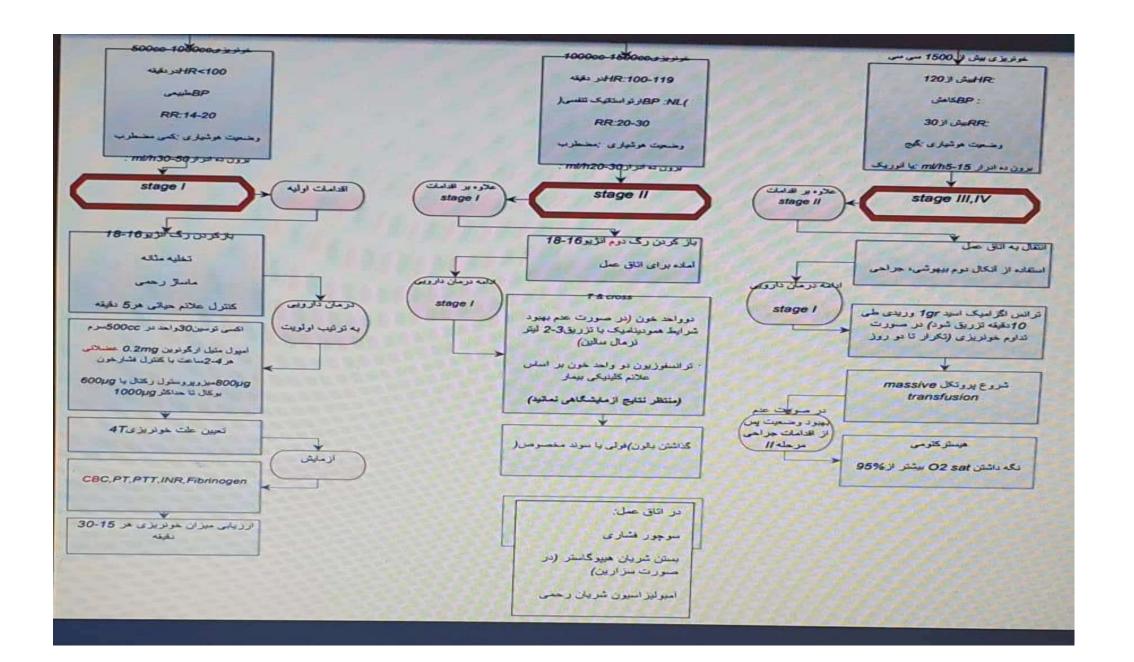
Repeat second

If no surgical causes, fibrinogen > 150, Plt > 50000, ABG = Nl but bleeding (+) or unstable

- → recombinant factor 7
- Targets of resuscitation in the setting of massive transfusion include:

Mean arterial pressure (MAP) of 60 to 65 mm Hg

Hemoglobin 7 to 9 g/dL


INR < 1.5

Fibrinogen > 1.5 to 2 g/L

Platelets > 50 000

pH 7.35 to 7.45

Core temperature greater than 35 C

Packed cell:

1unit = 250 ml

CPDA -1 \rightarrow shelf life = 35 d (< 6 °C)

given over 1-2 h but *not longer* than 4 h (child : 2-5 ml/kg/h)

Type – screen & cross-match

1 unit \rightarrow Hb 1g/dl \uparrow

CMV-negative or CMV reduced risk (leukocyte reduced) RBCs \rightarrow *should be used* in pregnant women who are CMV-negative or whose CMV status is unknown.

Over time:

- Lactic acid K Ca ↑
- 2,3 DPG ATP PH glycolysis ↓
- packed cell :
 - * young : < 14 -21 d
 - * old: > 21 d

FFP

- After thawing(30-37 \circ C) over 20-30 min \rightarrow use maximally during $4h \rightarrow$ if not \rightarrow store 1-6 \circ C \rightarrow use within 24h(if no use \rightarrow discarded)
- $\blacksquare 200 300 \text{ ml/h}$
- ABO compatible but need no crossmatch, no (leak clot abnormal color)
- Once thawed \rightarrow activity of clotting factors, particularly \vee , \vee III \rightarrow decline gradually \rightarrow re-administration may \rightarrow every 6 to 8 hours if there is ongoing bleeding due to the short half-life of factor VII; \vee II has a half-life of 2 to 6 hours
- 10-20 mL/kg will increase factor levels by 20-30%

Platelet:

- pool of 6 whole blood derived (→ referred : random donor) platelets or one apheresis platelet
- * Random donor : 1 unit \rightarrow 5000 10000 \uparrow
- * single donor(apheresis) \rightarrow 30000 -60000 \uparrow
- room T (22 \circ C) \rightarrow RD : viable \rightarrow 5-7 d
- Thrombocytopenia :
 - * procedures > 50,000
 - * CNS & Retina > 100,000
 - * neuroaxial > 80,000
 - * LP >40,000

Contraindication:

TTP, HUS, HIT

If ABO identical platelets : *not available* \rightarrow ABO plasma compatible may be use \rightarrow but will not cause clinically significant problems

ABO incompatible platelets \rightarrow only minimal risk of hemolysis (unless large doses of ABO incompatible platelets are transfused)

Rh: should be compatible

Pregnancy:

CMV-seronegative or CMV reduced risk (leukocyte reduced) platelets should be used in pregnant women who are CMV-seronegative or whose CMV status is unknown.

Cryopercipitate:

- prepared from plasma
- fibrinogen, VIII, XIII, von Willebrand factor, fibronectin
- main indication : hyfibrinogenemia

Cryo <u>should not</u> be used for patients with <u>Hemophilia A</u> (Factor VIII deficiency) unless recombinant and/or virally inactivated factor VIII preparations are not available.

It <u>should not</u> be used for patients with <u>von Willebrand disease</u> unless they are proven not to respond to DDAVP.

It is **not usually** given for **Factor XIII deficiency**, as there are virus-inactivated concentrates of this protein available.

Cryo is sometimes useful if **platelet dysfunction** associated with **renal failure** does not respond to dialysis or DDAVP.

Use for **fibrin glue**

Fibrinogen Replacement:

- 1 unit of cryo per $5kg \rightarrow will$ increase fibrinogen by about 100 mg/dLNumber of bags = $0.2 \times weight$ (kg) \rightarrow provide about 100 mg/dL fibrinogen

 Many institutions use a standard dose of 10 units and then repeat if needed
- lunit of cryo has low volume, ABO compatibility is not required except in neonates & small children unless high volumes of cryo are to be transfused

- Each unit (~10-15mL) provides:
- Fibrinogen 150-250 mg with a half-life of 100-150 hours
- Factor VIII 80-150 U with a half-life of 12 hours
- Von Willebrand factor 100-150 U with a half-life of 24 hours
- Factor XIII (13) 50-75 U with a half-life of 150-300 hours
- Cryo also contains fibronectin; however there are no clear indications for fibronectin replacement

Acute hemolytic reactions:

- **Early signs:** may fever, hypotension, flushing, wheezing, anxiety, and/or red-colored urine
- Late signs: may a generalized bleeding tendency (DIC) and/or hypotension

Nonhemolytic febrile reactions:

fever (some times :shaking, chills, hypotension, and vomiting)

Allergic reaction:

- maculopapular rash and/or urticaria
- Anaphylactic reaction :

Dyspnea, Wheezing ,Anxiety , Hypotension without fever ,Bronchospasm in severe cases

Transfusion-related acute lung injury (TRALI):

■ rapid onset of *shortness of breath*, hypoxemia, and rales, without signs of acute cardiogenic pulmonary edema and fever during 6 h of transfusion

Or late as 6-72h sfter transfusion

Circulatory (volume) overload:

■ Shortness of breath, Rales, Orthopnea, Tachycardia, Distended jugular veins, Other evidence of cardiac decompensation

Acute hemolytic reactions (ABO incompatibility):

Accidental transfusion of RBCs of a different ABO type

Febrile non- hemolytic reaction:

Cytokines and other normal constituents of leukocytes, platelets, or plasma accumulate in blood components during storage

When transfused \rightarrow some recipients \rightarrow which *fever* is the *most common* symptom.

Allergic reaction

recipient was exposed → foreign substance in the blood product to which the recipient is sensitized.

Studies in the medical literature sugg \rightarrow causes of allergic reactions \rightarrow *polymorphic proteins* in the donors' plasma

food (nuts, tomatoes), or medications (penicillin) \rightarrow donor ingested immediately before collection

Anaphylactic reaction:

Most cases of anaphylaxis ar \rightarrow recipients with <u>IgA deficiency</u> \rightarrow developed anti-IgA

(Not all IgA-deficient persons)

Similar reactions in ahaptoglobinemia → reported

Transfusion-related acute lung injury (TRALI):

Neutrophils \rightarrow effector cells \rightarrow adhere to the *pulmonary endothelium* \rightarrow permeability \uparrow \rightarrow pulmonary edema

Elements \rightarrow activation \rightarrow neutrophils:

transfused human leukocyte or neutrophil antigen (HLA or HNA) antibodies and transfused bioactive substances such as lipids or cytokines

Because pregnancy → common cause of alloimmunization → HLAs and HNAs →

most cases of TRALI have been traced to plasma-containing blood components collected from female blood donors

When the American Red Cross converted to predominantly male-donated plasma, the number of cases of TRALI decreased very significantly from 2006 to 2008

Circulatory (volume) overload

Increased fluid volume →

susceptible patients→ cardiovascular compromise, elderly patients, and small children→pulmonary edema

A usual **transfusion rate** is 2-2.5 mL/kg per hour \rightarrow In at-risk patients, blood products can be transfused at a **slower rate**.

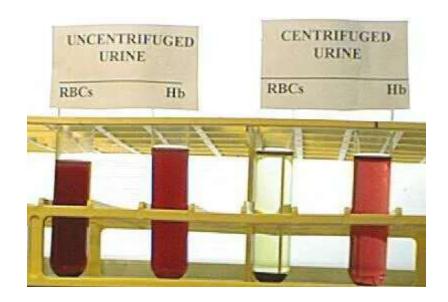
Lab studies:

acute hemolytic reactions: the workup includes:

Visual inspection of the recipient's plasma and urine

Retyping of donor and recipient red blood cells (RBCs)

Direct antiglobulin (Coombs) testing


febrile nonhemolytic reactions:

Every things normal

Allergic reaction:

Every things normal

Eo may not increase

Anaphylactic reaction:

anti-IgA in a pretransfusion sample of the recipient's serum or plasma establishes the diagnosis

Transfusion-related acute lung injury (TRALI):

plasma levels of brain natriuretic peptide (BNP) may be useful in distinguishing the <u>cardiogenic pulmonary</u> <u>edema</u> present in circulatory overload from the <u>noncardiogenic pulmonary edema</u> present in TRALI

Acute hemolytic reactions:

- Immediate *DC transfusion* while maintaining IV_LINEs for emergency management.
- Anticipate hypotension, renal failure, and DIC.
- Prophylactic → reduce the risk of *renal failure* may include *low-dose dopamine* (1-5 mcg/kg/min)

Maintain U/O minimally \rightarrow 75-100 ml/h

- * vigorous hydration with crystalloid solutions (3000 mL/m²/24 h)
- * If fluid and mannitol \rightarrow ineffective \rightarrow *furosemide*
- * urine alkalization → bicarb

((osmotic diuresis with 20% mannitol (100 mL/m²/bolus, followed by 30 mL/m²/h for 12 h).))

If DIC is documented and bleeding requires treatment, *transfusions of frozen plasma*, *pooled cryoprecipitates* for fibrinogen, and/or *platelet* concentrates may be indicated.

Febrile, nonhemolytic reactions

fever usually *resolves* in 15-30 minutes without specific treatment

If fever \rightarrow discomfort \rightarrow oral *acetaminophen* (325-500 mg)

Avoid aspirin because of its prolonged adverse effect on platelet function

Allergic reactions

diphenhydramine → effective → pruritus that is associated with hives or a rash

(oral or IV) 25 -100 mg

Anaphylactic reactions

SQ injection of **Epinephrine** (0.3-0.5 mL of a 1:1000) is standard treatment

If patient \rightarrow sufficiently hypotensive \rightarrow efficacy of the subcutaneous route?

Epinephrine (0.5 mL of a 1:10,000 aqueous solution) \rightarrow IV

Although **no documented** evidence exists that *IV corticosteroids* are beneficial most clinicians → hydrocortisone or prednisolone if an immediate response to epinephrine does not occur.

Transfusion-related acute lung injury (TRALI):

- 1- Immediately discontinue → transfusion while preserving venous access IVs
- 2- mild episodes \rightarrow respond to oxygen administered by nasal catheter or mask If shortness of breath persists after oxygen administration \rightarrow ransfer to an IC where mechanical ventilation can be employed.
- 3- In the absence of signs of acute volume overload or cardiogenic pulmonary edema diuretics are not indicated.

No evidence → corticosteroids or antihistamines are beneficial.

Treat complications with specific supportive measures.

Circulatory (volume) overload:

- 1- sitting position and administer oxygen to facilitate breathing.
- 2- The *most specific* treatment is *discontinuing the transfusion* and removing the excessive fluid.
- 3- If practical, the unit of blood component being transfused may be lowered to reverse the flow and to decrease intravascular volume by a controlled phlebotomy.
- 3- Less urgent situations may be managed by a *parenteral or oral diuretic (furosemide)*.