

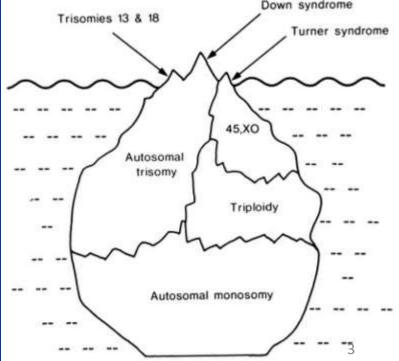
Balanced Structural Chromosomal Rearrangement & Pregnancy Loss

Presented by Dr. Nazanin Jalilian Assistant professor of Medical Genetics

Outline

Importance

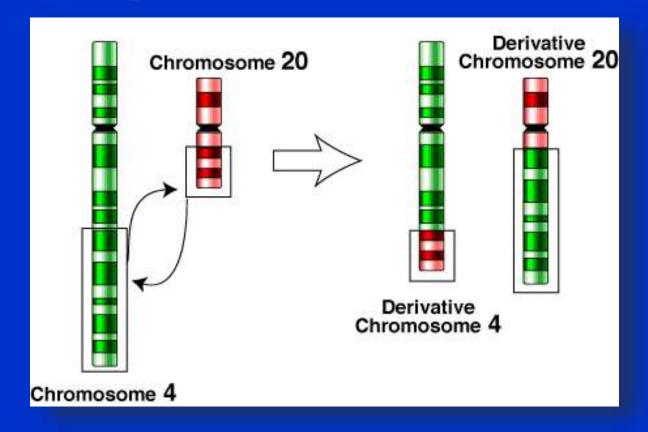
Subtypes
 Reciprocal translocations
 Robertsonian translocations
 Inversions
 Chromosomal heteromorphisms


How are associated with RPL

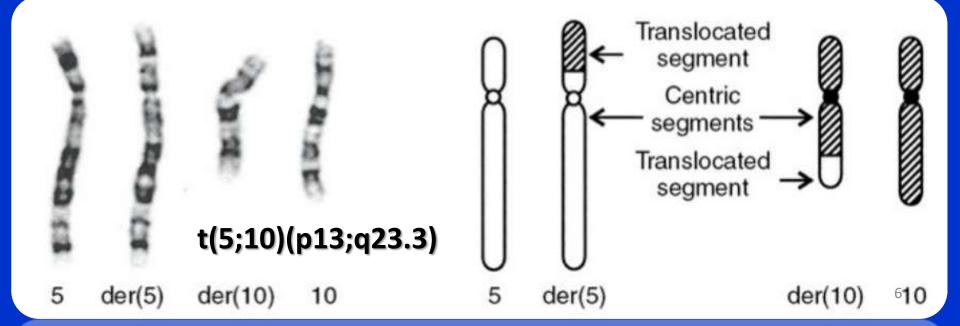
Clinical Significance & Importance

Human pregnancy is both a vulnerable & robust process
 Vulnerable: large proportion of all conceptions are chromosomally abnormal with the great majority aborting

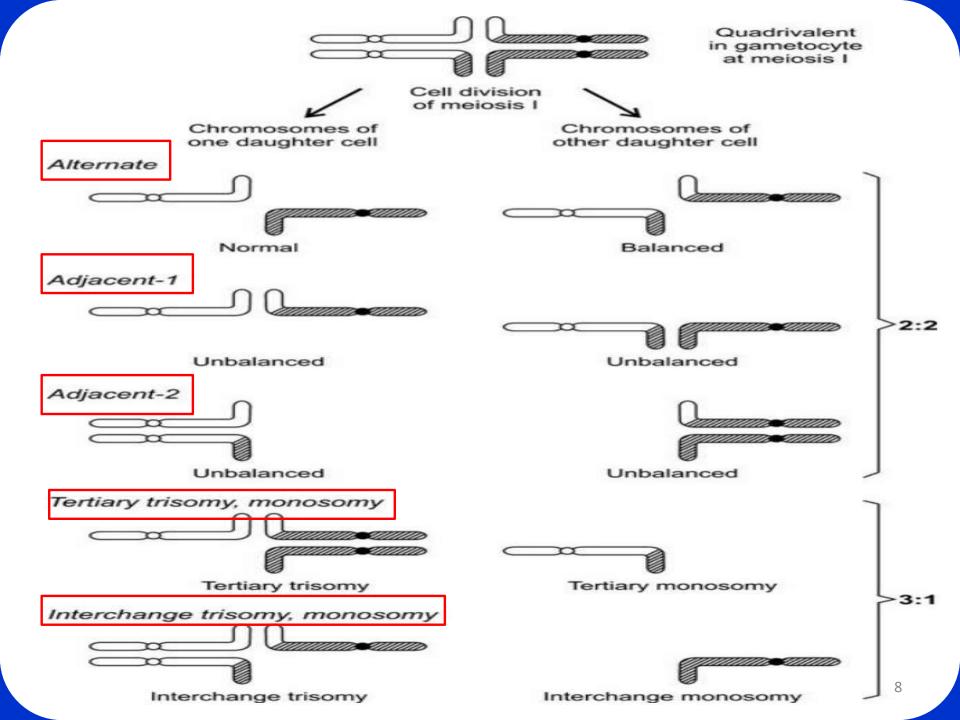
Robust: >99% of the time, a term pregnancy results in a chromosomally normal baby
Down syndrome


> unbalanced chromosomal abnormalities are seen in less than 1% of newborns

Balanced Structural Chromosomal Rearrangement & Pregnancy Loss


balanced chromosomal rearrangements can result in unbalanced gametes, which subsequently lead to conditions such as RPL, stillbirth, and neonates with multiple congenital anomalies

Reciprocal Translocation


Reciprocal Translocations

> two-way exchange of material between two chromosomes
> physical apposition
> derivative (der) chromosome!
> 1 person in 500 is a reciprocal translocation heterozygote
> De novo or familial

Details OF Meiotic Behavior

	ONE DAUGHTER GAMETOCYTE WITH:	OTHER DAUGHTER GAMETOCYTE WITH:	SEGREGATION MODE
A' B A B'	2:2 Segregations		
	A and B	A' and B'	Alternate segregation
	A and B'	B and A'	Adjacent-1 segregation
	A and A'	B and B'	Adjacent-2 segregation
	3:1 Segregations		
	ΑΒΑ΄	Β'	3:1 segregation with
	A B and B'	A'	tertiary trisomy or monosomy
0.0	A' B' and A	В	3:1 segregation with
	A' B' and B	A	interchange trisomy or monosomy
	4:0 Segregation		
	A B A' B'	None	4:0 segregation with double trisomy or monosomy 7

Gamete Studies

Sperm karyotyping of 45 men, heterozygous for a translocation Oocyte karyotyping of 9 women heterozygous for a translocation

56% of sperm, and 70% of ova, were chromosomally unbalanced

Conceptions

Equal distribution with karyotypes in the gametes?
Female: a modest increase in the average normal fraction for embryos (45%) cf. gametes (30%)
Male: the average normal fraction of embryos (41%) is similar to that of gametes (44%)

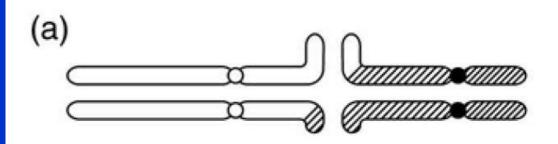
Viability In Utero

> Unbalanced combinations produce:

🐐 <u>Enormous genetic imbalance</u> 🏓

conceptus lost very early in pregnancy (occult abortion), or even fail to implant

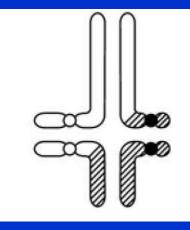
Moderate imbalances ->


 proceed to the stage of recognizable miscarriage, or to later fetal death in utero

Lesser imbalances ->

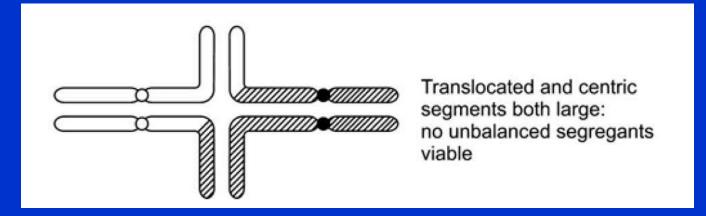
result in the birth of an abnormal child.

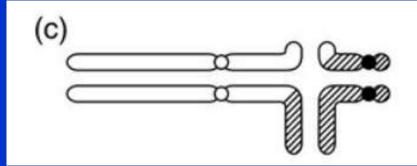
Predicting Segregant Outcomes (1)


Translocated segments are small in genetic content **→** adjacent-1 capable of giving rise to viable abnormal offspring

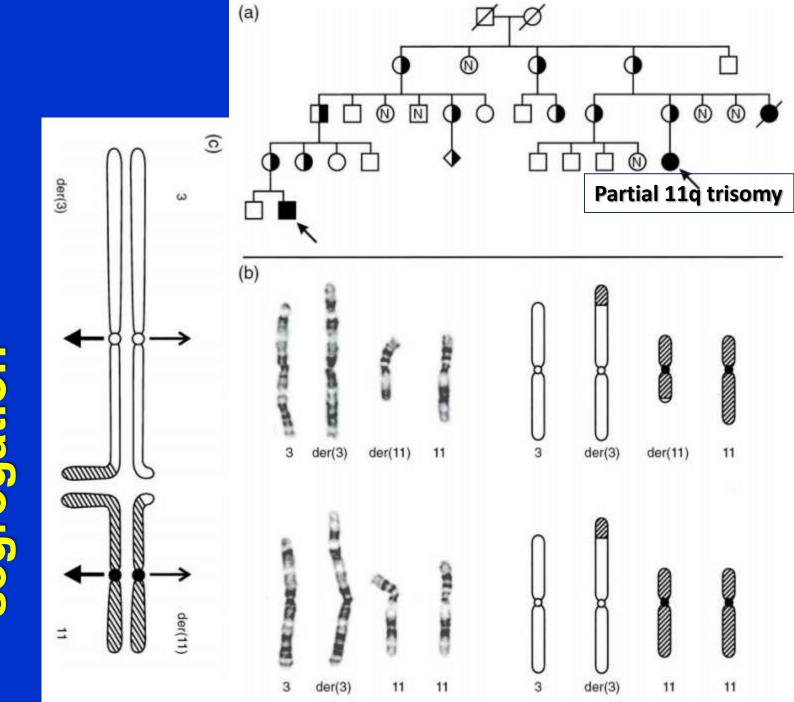
Translocated segments small: adjacent-1 most likely

Predicting Segregant Outcomes (2)

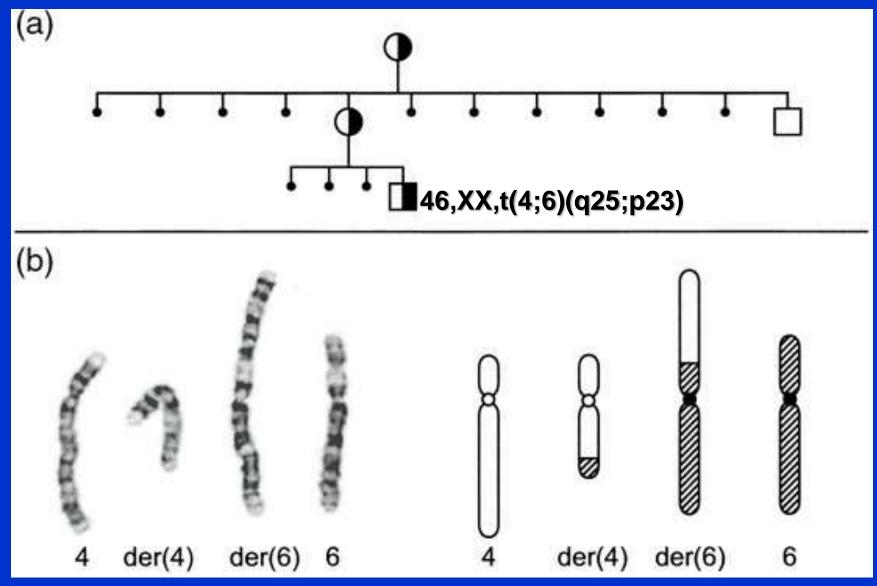

The centric segments are small in content adjacent-2 is the most likely segregation to give a viable abnormal outcome


Centric segments small: adjacent-2 most likely

Predicting Segregant Outcomes (3)


If the translocated and centric segments both have large content, no mode of segregation could produce an unbalanced gamete that would lead to a viable offspring

If one of the whole chromosomes of the quadrivalent is small in content, 3:1 disjunction is the most likely . The small chromosome may be a small derivative chromosome or a chromosome 13, 18, or 21



Quadrivalent 'lop-sided': 3:1 segregations most likely

Adjacent-1 segregation

No unbalanced product viable

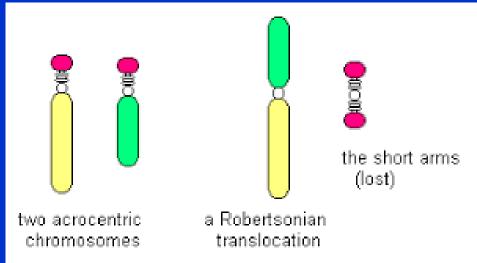
Infertility

- Infrequently, gamete formation in male translocation heterozygote is disturbed gametogenic arrest
- **>** Not predictable from the nature of the translocation
- Same translocation compromise fertility in only some men in the family
 - effect of the genetic Background
- Consequence of failure of pairing
- The semen profiles of translocation carriers may not always predict fertility outcomes
- t(10;14) man, normozoöspermic, had <u>30%</u> of spermatocytes showing synaptic pairing abnormalities
- ► t(13;20) man, <u>azoöspermic</u>, and showed synaptic pairing abnormalities in <u>71%</u> of meiotic spreads

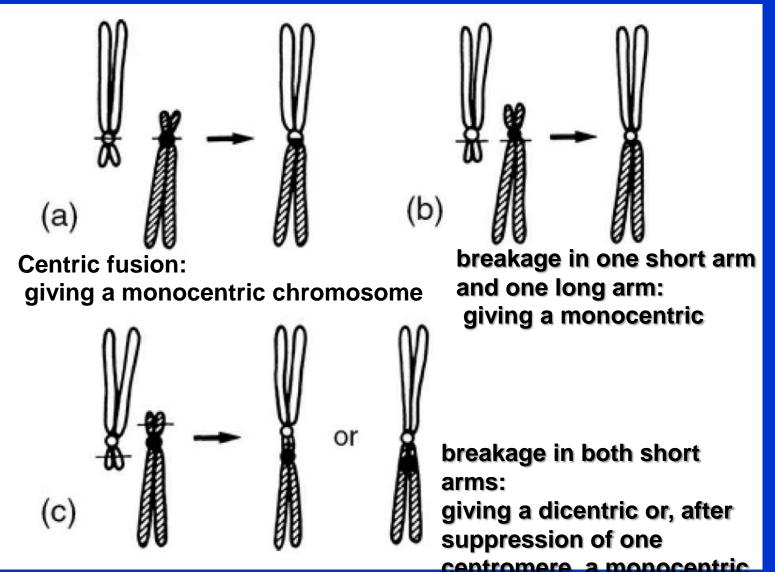
Genetic

Counseling

- **1. Is there a risk of having an abnormal child?**
- 2. If so, what is the magnitude of the risk?
- 3. What would be the abnormality, and would the child survive?
- 4. What if the same translocation that I have is found at prenatal diagnosis?
- 5. What is the risk for pregnancy loss through abortion? Is pregnancy possible?
- abortion: is pregnancy possible.
- 6. Anything else I should know?

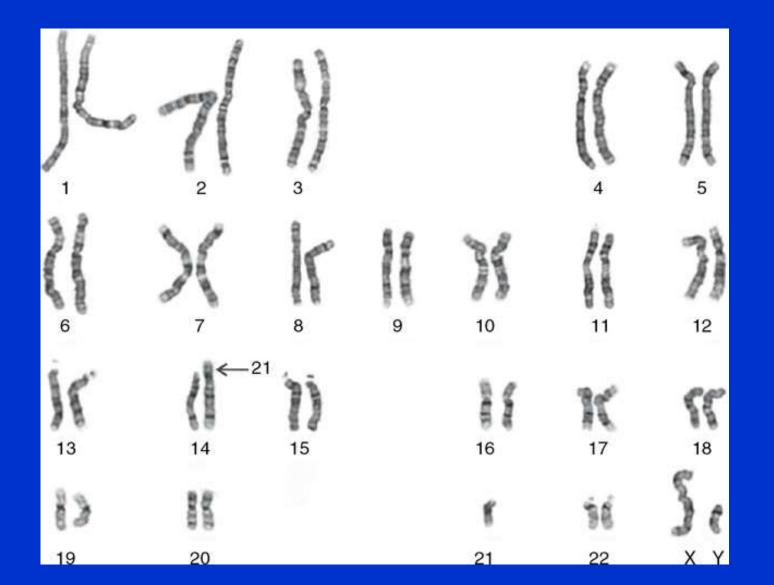

Robertsonian Translocations

Robertsonian Translocations


Robertson

- Insect cytogeneticist
- Five human acrocentric autosomes—13, 14, 15, 21, & 22
 - the complete long arm chromatin of the two fusing chromosomes
- Among the most common balanced structural rearrangements

Frequency in newborn surveys of about 1 in 1,000



Mechanisms of Formation of Robertsonian Translocations

21

The balanced rob(14q;21q) in a Phenotypically Normal Male

22

TRANSLOCATION	LITERATURE REVIEW	UNBIASED ASCERTAINMENT
13q13q	3%	2%
13q14q	33%	74%
13q15q	2%	2%
13q21q	2%	1%
13q22q	1%	2%
14q14q	1/2%	
14q15q	2%	5%
14q21q	30%	8%
14q22q	1%	2%
15q15q	2%	-
15q21q	3%	1/2%
15q22q	1/2%	1%
21q21q*	17%	3%
21q22q	2%	1/2%
22q22q	1%	~ _

Table 7–1. The Frequency of Robertsonian Translocations

Meiotic Behavior of the Robertsonian Translocation

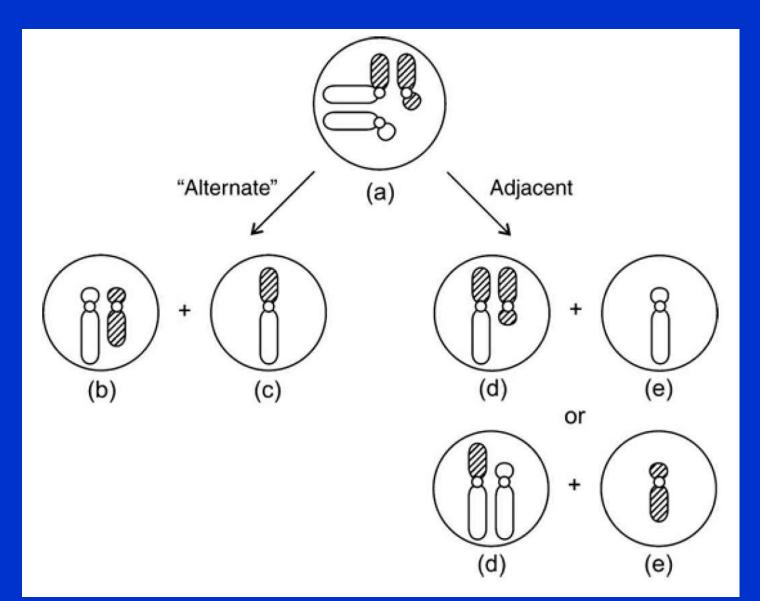


Table 7–2. Estimates of Risks to Have a Child with Aneuploidy or with a Uniparental Disomy Syndrome, for the Heterologous rob Carrier

	CARRIER PARENT				
	Ν	MOTHER]	FATHER	
ROB	UNBAL.	UPD*	UNBAL.	UPD*	
13q14q	1%	<1/20%	<1%	<1/2%	
13q15q	1%	<1/2%	<1%	<1/2%	
13q21q	10%-15%	_	<1%	_	
13q22q	1%	—	<1%	_	
14q15q	—	1⁄2%	-	<1/2%	
14q21q	10%-15%	<1⁄20⁄0	<1%	<1/2%	
14q22q	_	<1/2%	-	<1/2%	
15q21q	10%-15%	<1/2%	<1%	<1/2%	
15q22q	_	<1/2%	-	<1/2%	
21q22q	10%-15%	—	<1%	<u> </u>	

Association with Infertility

infertile couples: 7-fold excess of Robertsonian heterozygotes

- oligospermic Men: 13 fold excess among
- > compromise the fidelity of the first few mitoses, affecting mitotic segregation
- Conn et al.(1998):

> two infertile couples with Robertsonian translocation:

- > 45,rob(13q14q) man
- > 45,rob(13q21q) woman

karyotype 33, day-3 embryos from the two couples

- > 90% of embryos were chromosomally abnormal
- > 40% were trisomic or monosomic for 13, 14, or 21

> 60% had a"chaotic karyotype"

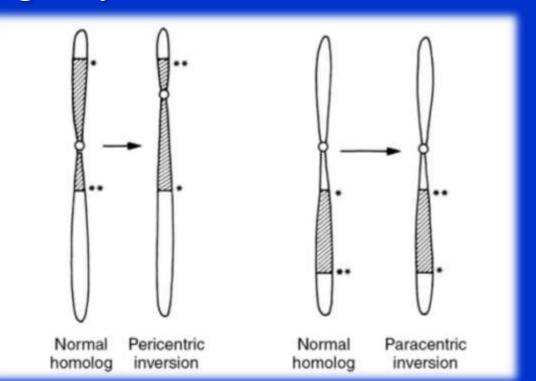
rob(14q21q)

the most important Robertsonian translocation in <u>frequency</u> and <u>genetic risk</u>

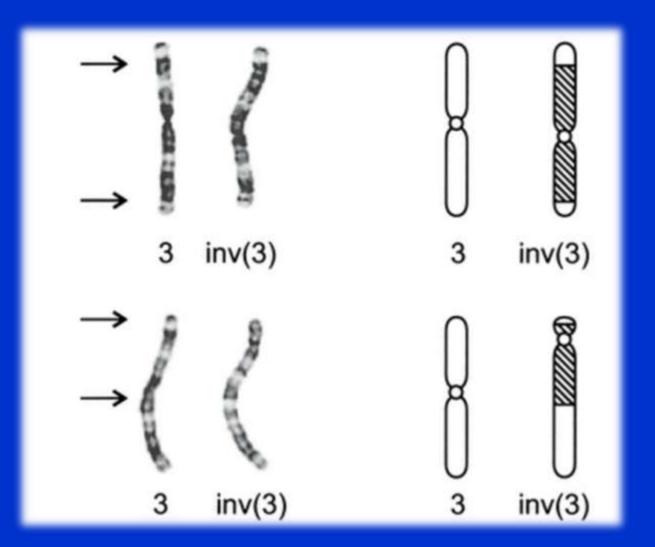
> marked difference according to the sex of the parent

- **Most familial translocation DS is due to the rob(14q21q)**
- At amniocentesis, the *female* heterozygote has a risk for translocation trisomy 21 of about <u>15%</u>

risk of having a liveborn child with translocation DS is a <u>little less</u> (in the range 10%–15%):


b the loss, through spontaneous abortion

The risk for the *male* heterozygote is very different, and a figure of <1% is appropriate to offer</p>


Inversions

Inversions

a <u>two-break</u> event involving just <u>one chromosome</u>
The intercalary segment rotates 180°, reinserts, the breaks unite
generation of recombinant (rec) gametes that may lead to
abnormal pregnancy

Two Pericentric Inversions of Chromosome 3

Both of the noninverted segments are small in one (a) and one is large in the other (b).

Frequency of Inversions

Classical inversions are a fairly <u>uncommon</u>

Estimates of frequency range from: ~0.12% to 0.7% (pericentric) ~0.1% to 0.5%(paracentric) of individuals

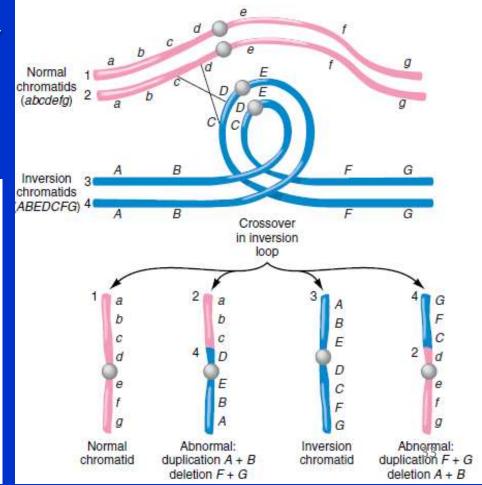
Many small examples remain undetected

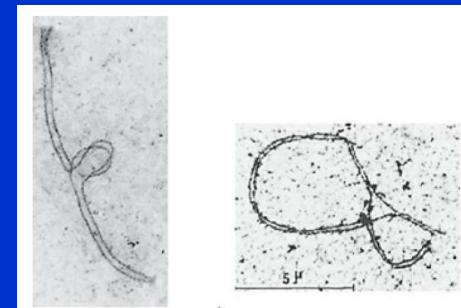
Will not be detected by chromosome microarray

"Normal Variant" Inversions

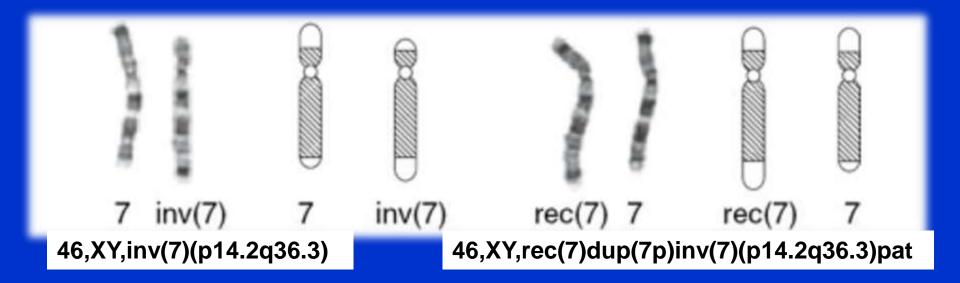
"Inversions" having a breakpoint within the <u>heterochromatic regions</u> of chromosomes 1, 9, 16, &Y

inv(2)(p11.2q13)


inv(3)(p11q11) and inv(3)(p11q12), inv(3)(p13q12), inv(5)(p13q13)

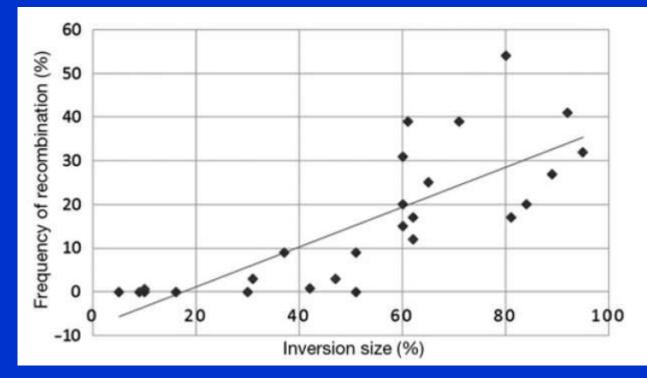

inv(10)(p11.2q21.2)

The Autosomal Pericentric Inversion: Meiotic behavior


The inversion heterozygote may produce chromosomally unbalanced gametes

Suffer reproductive pathology

Pericentric Inversion 7


Pericentric inversion 7 in the father (*left*) of an abnormal child with a recombinant 7 (*right*)

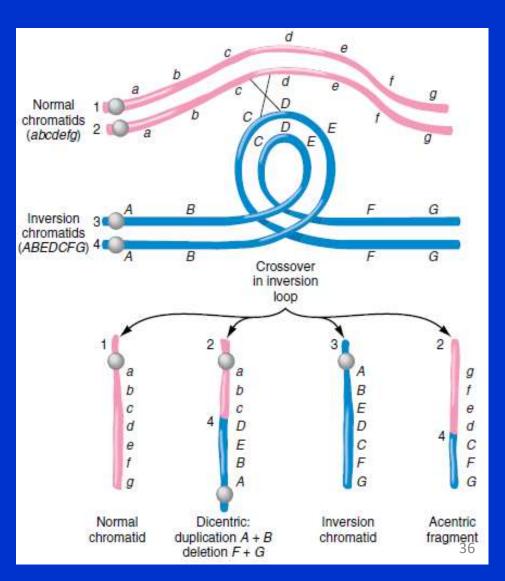
>duplication of over half of 7p, a minuscule deletion in distal-most subband of 7q

> The child has triple amount of the segment 7p14.2pter

The countertype form, with monosomy 7p14.2pter (& trisomy 7q36.3qter), would cause a miscarriage

The Proportion of Gametes that are Recombinant, Compared with the Relative Size of the Inversion

The larger the inversion size, the more frequently recombinants inversion length:


✓ >50% : high risk of recombination

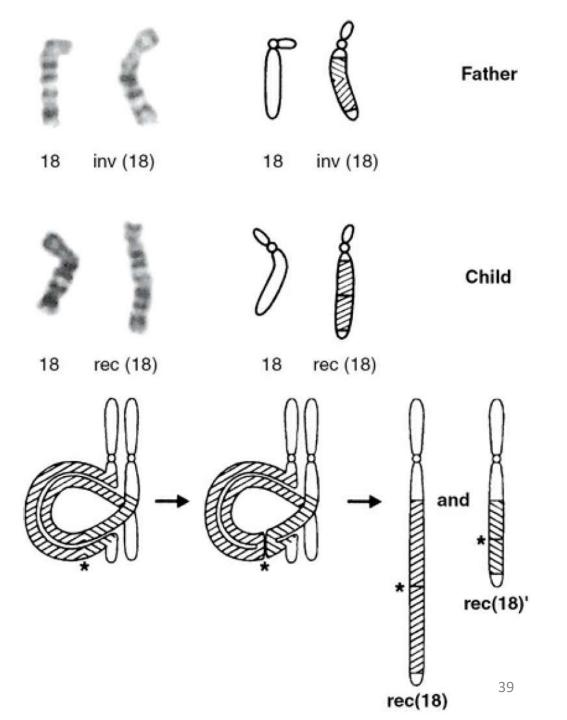
/ between 30% and 50%: small risk

✓ <30% no recombination appears to take

THE PARACENTRIC INVERSION: DETAILS OF MEIOTIC BEHAVIOR

Classic Theory: only have children who are karyotypically normal?

What are the Findings on Direct Observation of Gametes?


> recombination is scarcely ever seen
> Anton et al. (2005):
> inversion segments ranging from 6% to 32%
> The fractions of recombinant sperm ranged from zero to 0.81%
> Similar findings in similar studies!!!

What is the possible alternative mechanism?

Recombination/Reunion with Viable Products

- Classical theory remains valid in essence
- The abnormal process of "U-loop recombination
- Reunitant rather than Recombinant
- The crossover within the inversion loop, instead of
- continuing on in the same direction along the chromatid, reverses upon itself as a <u>"U-loop."</u>
- have either:
 - duplication of that part of the inversion loop proximal to the crossover
 - deletion of that part distal to it, or vice versa

Proposed mechanism of U-loop exchange

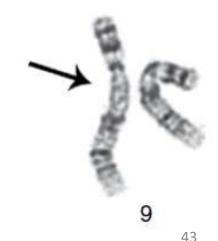
GENETIC COUNSELING

- The vast majority of paracentric inversions likely to be harmless
- refute a complete harmlessness in the parental paracentric inversion, whether due to classic recombination or to other forms of Rearrangement > A matter for debate Inversions with a demonstrated recombinant offspring should offer of prenatal diagnosis: \succ inv(7)(q31.31q31.33), inv(9)(p13p24), inv(9)(q22.1q34.3), inv(14)(q24.2q32.3), inv(17)(p11.2p13), inv(18)(q12.1q23), inv(18)(q21.1q22.3), and inv(18)(q21.32q23).

Chromosomal Heteromorphisms

Normal Chromosomal Variation

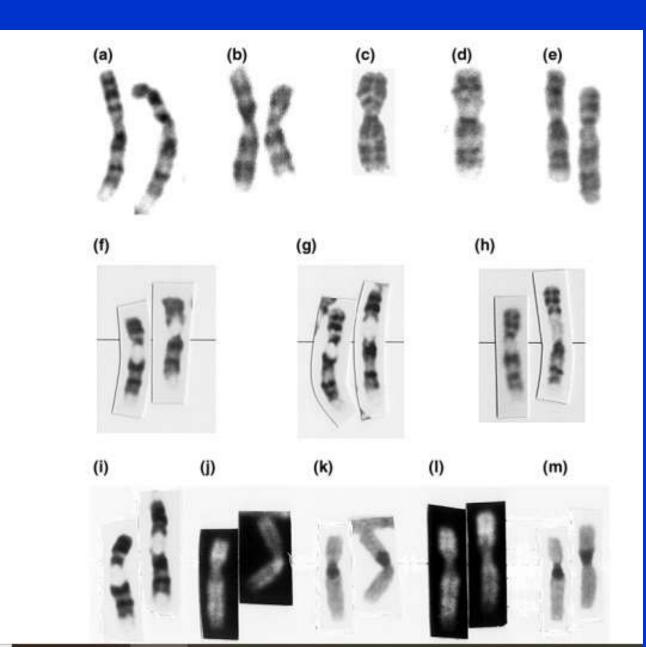
Variation:


I. normal traits e.g. height, blood pressure, & intelligence
II. Abnormal variation: may be clear-cut, dwarfism,hypertension, and intellectual deficiency
III. distinction may blur at the edges: short stature, borderline blood pressure, and low-normal IQ

 somewhat of a parallel in the study of chromosomes
 Some variation is quite normal, and well understood
 observation such as a large deletion is <u>abnormal</u>
 But some chromosomal variation <u>does not admit of</u> straightforward interpretation

Large Heterochromatic Regions

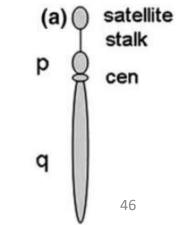
variable amount of heterochromatin below the centromere in the proximal long arm of specific chromosomes


- > 1, 9 and 16
- no clinical consequence
- do not even include them in clinical reports, unless desired

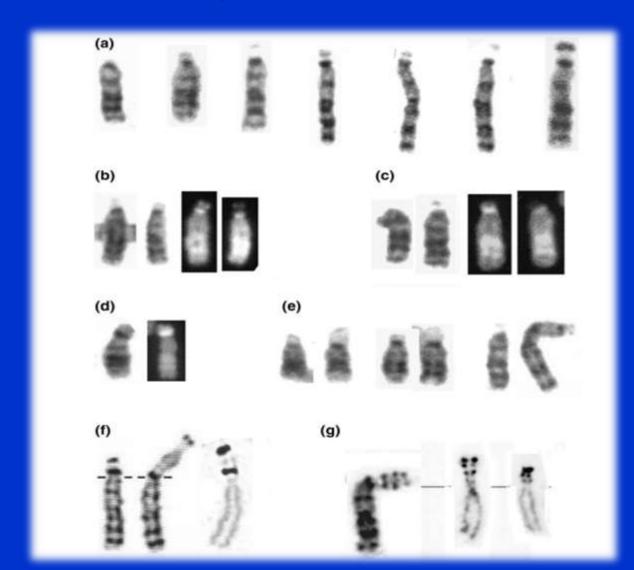
Variant Pericentric Inversions around the Centromere

> One of the most common chromosome genetic variants is inv(9)(p12q13) a change in the heterochromatin to the proximal short arm an inversion of the centromeric region of chromosomes 1, 2 and 16 is also seen have no clinical consequence some laboratories do not even include them in clinical reports, although some do add a comment in the interpretation of the report

Pericentric Inversion of Chromosome 9



45


Variant Satellite Regions

The most variable chromosomes in the human karyotype are the acrocentric chromosomes, 13, 14, 15, 21 & 22

The features in common are:
 (1) they all carry nucleolar organizing regions (NORs) revealed by silver staining;
 (2) they all have four distinct regions (satellite, stalk, short arm and centromere) that can vary in size and/or may have different staining properties
 (3) all are involved in Robertsonian translocations

Normal chromosomes 13 showing increasing band resolution & variations in size and staining of short arms, stalks and satellites

47

Variant Yqh

Y chromosome:

> unique genes on its short arm and proximal long arm
> heterochromatin in the distal long arm (Yqh region)
> quite variable in size
> Normal variant
> C-banding
> comment in the report regarding this region

Inversion of Chromosome Y

 a structural variant of the human Y chromosome
 prevalence of males with this structural abnormality is 1 per 1000
 generally not associated with specific phenotypic

abnormalities or fertility problem

