

اداره کل انتقال خون استان اصفهان

آشنایی با انواع فر آورده های خون نحوه نگهداری، اندیکاسیون ها و علایم اختصاری

دكتر محمدرضا جابرى

وظایف سازمان انتقال خون

- انتخاب اهدا كننده سالم
- آزمایشات لازم بر روی خون های اهدایی (بررسی HIV و HBV و HCV و e miv و سیفلیس و تعیین گروه خون)
- تهیه فرآورده های مختلف نظیر گلبول قرمز، پلاکت، پلاسما، کرایو و سایر فرآورده ها نظیر گلبول قرمز شسته شده یا اشعه دیده و...
 - نگهداری صحیح فرآورده های خونی
 - ريليز و پخش خون

Indications of Blood Therapy

- → Low O2 carrying capacity (LOCC)
- **▶** LOCC & low blood volume
- → Bleeding due to coagulopathy

BLOOD PRODUCTS

- → Blood-cell products
 - whole blood
 - Red blood cells
 - leukocyte-poor (reduced) red cells
 - washed red blood cells
 - random-donor platelets concentrates
 - single-donor platelets concentrates [human leukocyte antigens(HLA)-matched platelets]
 - irradiated blood products (red blood cells and platelets concentrates)- after exposure to 25 Gy
 - Pediatric bag(RBC)

BLOOD PRODUCTS

- Blood-plasma products
 - Fresh Frozen Plasma (FFP)
 - Cryoprecipitate
 - Cryopoor plasma (CPP)

Blood bags

Whole Blood

- 450ml +/- 10%
- 63ml CPDA-1
- Hct= 36-44%
- Stored at 2-6 °C for 35 days
- Contains Normal Levels of WBC and PLT

Whole Blood

- Transfuse same group as patient (ABO & Rh)
- 1 unit: increase Hb level about 1g/dL (10g/L)& Hct by 3%.
- Use blood transfusion set

WHOLE BLOOD TRANSFUSION-indications

- **→** Acute hypovolemia (hemorrhagic shock)
- **→ Massive transfusion** (>4-5 L/24hr)
- **Exchange transfusion in infants**

Contraindications of Whole Blood

- → Congestive heart failure
- **→** Chronic anemia

Blood product preparation

Blood product preparation

Red blood cells

- Prepared by removing 200-250ml of plasma from a unit of W.B.
- 200-300 ml
- Hct= 65-80%
- Stored at 2-6 °C for 35 days
- Do not contain functional platelets or granulocytes
- Have the same O2 carrying capacity as W.B

Red blood cells

- Injection up to 4 h's
- Adult rate: 150-300 ml/h
- Child. rate: 2-5ml/kg/h
- 1 unit: increase Hb level about 1g/dL (10g/L)& Hct by 3%.
- In child. 8-10ml/kg increase Hb level about 2g/dL (10g/L)& Hct by 6%.
- Consider age, symptoms, Hb level, underl. Dis., acute/chronic, other alternatives

Red blood cells-indications

- **→** Anemia in patient with normal blood volume
- **→** Acute blood loss >15% blood volume
- ▶ Pre/ Post operative (Hb<9 & blood loss>500ml)
- **→** Hb<7 in ill patient
- → Thalassemia, sickle cell anemia
- **▶** Neonate Exchange transfusion
- **▶** Neonate&Pediatric transfusion
- **→** Hb<8 in patient with acute coronary syndrome

Washed red blood cells - indications

- Severe allergic reactions 3 times
- IgA deficient patients 5 times
- Attention: after washing
 - Decrease protein to 98%
 - Decrease WBC to 85%
 - Decrease RBC 10% to 20%
 - Stored at 2-6 °C for 24hr

leukocyte-poor (reduced) red cells

- Contains: at least 85% of original red cells
- WBC $< 5 \times 10^6$
- to prevent or avoid nonhemolytic febrile reactions (FNHTR) due to antibodies to white cells and platelets in the recipients exposed to previous transfusions or pregnancies
- Reduce rate of HLA alloimmunization among hematology-oncology patients
- to minimize transmission of viral disease such as CMV

Leukoreduction

Leukocyte Reduction Filters (maintains closed system)

Irradiated red blood cells

- Gamma irradiation 2500 rad
- Increase potassium level
 expired date 28 days
- Changes WBC DNA

Transfusion-Associated Graft versus Host Disease

- Incidence: Rare
- Mechanism:
 - Viable donor T-lymphocytes engraft in recipient and mount an immune response against recipient tissues
- Signs & Symptoms
 - Erythroderma
 - Maculopapular rash
 - Anorexia
 - Nausea & vomiting
 - Diarrhea
 - Hepatitis
 - Pancytopenia
 - Fever

Who is at risk for TA-GVHD and needs irradiated blood products?

- Significantly increased risk
 - Congenital immunodeficiency syndromes
 - Bone marrow transplantation (allo & auto)
 - Transfusions from blood relatives
 - Intrauterine Transfusions
 - HLA-matched platelet transfusions/blood components
 - Hodgkin's disease
 - Patients treated with purine analogues

- Minimally increased risk
 - Acute leukemia
 - Non-Hodgkin's lymphoma
 - Solid tumors treated with intensive chemotherapy/radiation
 - Exchange transfusion
 - Premature neonates
 - Neonates on ECMO
 - Solid organ transplant recipient
- Perceived, but no reported risk
 - Healthy newborns
 - Patients with AIDS

Mechanism of Engraftment in Normal Recipients

- HLA homozygous donor
- HLA heterozygous recipient
- Shared haplotype

Irradiation of Blood Components

RAD-SURE®	OPERATOR:_	DATE:
25 Gy INDICATOR	NOT	IRRADIATED
SP TECHNOLOGIES IN	NC. LOT NO:	EXP:
	E IRRADI	ATION
	E IRRADI	ATION
		ATION DATE:
BEFORE		

[K+] during storage

BLOOD LOSS- signs, symptoms and indication for transfusion

Volume Lost		Clinical signs	Preparation of choice	
mL	% of Total Blood Vol.			
500	10	None;	No transfusion or crystalloid solution	
1000	20	tachycardia	crystalloid solution or colloids or RBC if necessary	
1500	30	drop in BP	crystalloid solution plus colloids plus RBC or blood if available	
2000	40	shock	crystalloid solution plus colloids plus RBC or blood if available	

Patient and donor RBC selection by ABO and Rh type

Patient	Donor
A	A, O
В	B, O
AB	A, B, AB, O
О	O
Rh(+)	Rh(+), Rh(-)

Rh(-)

Rh(-)

RBC Changes during storage

- Increase K
- Increase Free Hb
- Decrease ATP
- Decrease 2,3DPG
- Decrease pH
- •

INDICATION OF FRESH BLOOD

- Neonate Exchange transfusion
- Neonate transfusion
- Thalassemia
- Intra uterian transfusion
- Hyperkalemic patients
- Massive transfusion

FRESH FROZEN PLASMA (FFP)

Blood product preparation

Fresh Frozen Plasma (FFP)

- prepared by removing plasma from W.B within 8h of collection.
- 200-250ml
- Stored at -30°C or below for 2years / -20 to -25 °C for 1year
- Contains :
 - Water, carbohydrates, fats, minerals albumin, clotting factors(all labile & stable clotting fx), immunoglobulin, antithrombin
- Each unit of FFP increases the level of each clotting fx by 2-3% in adults.

Fresh Frozen Plasma (FFP)-Indications

- Coagulopathy due to multiple factor deficiencies
- Corrections of known congenital or acquired coagulation factor deficiencies(e.g., factors II, V, VII, X, XI, or XIII) in patients with hemorrhage
- Urgent reversal of warfarin effect
- Treatment of microvascular hemorrhage in the presence of prolonged PT, aPTT (> 1.5 x normal)
- Treatment of microvascular bleeding following massive blood transfusion when timely reporting of laboratory test result is not available
- Plasma exchange for TTP

Fresh Frozen Plasma (FFP)-Contraindications

Plasma should not be used:

- as a volume expander or as a nutritional supplement
- as albumin supplementation
- for correction of hypogammaglobulinemia
- for treatment of hemophilia or von Willebrand disease or other congenital procoagulant and anticoagulant factor deficiency where virally inactivated or recombinant factor concentrates are preferred

Fresh Frozen Plasma (FFP)

- Thaw at 37 °C & use within 4 h,
 if not used keep at 2-6 °C for 24 h
- transfusion rate: adults= 200-300ml/h or 4ml/min child.= 60-120ml/h
- Transfuse by filter (170-260 micron)

Patient and donor plasma selection by ABO

Recipient

Donor

0

Δ

B

AB

O, A, B, AB

A, AB

B, AB

AB

CRYOPRECIPITATE & CPP

Cryoprecipitate

- Vol= 15ml
- The cold-insoluble portion of plasma that remains after FFP has been thawed at 1-6 ° C
- Use as soon as prepared / freeze
- Stored at -30°C or below for 2 years /
 -20 to -25 °C for 1 year

Cryoprecipitate

- Thaw at 37°C, kept max. 6 h. at room temp.
- Factor VIII decrease: 1st h. 10%

4h. 20%

6h. 30%

hence for Factor VIII replacement use within 4 h. of thawing

Transfusion rate: 5ml/min

Cryoprecipitate

Contains:

```
    Factor VIII:C = 80-120 U
```

- Factor VIII:vWF = 70-80 U
- Factor XIII = 40-60 U
- Fibrinogen = 150-250 mg
- Fibronectin = 30-60mg
- About 10-15ml of plasma
- Dose: 1U/5-10kg in hypofibrinogenemia

Cryoprecipitate-Indications

- von Willebrand's disease (if concentrate not available)
- Hemophillia A (if concentrate not available)
- Factor XIII def.
- Cong./acquired fibrinogen def.
- Uremic bleeding (DDAVP prefered)
- fibrin glue

PLATELET PRODUCTION & STORAGE

Random donor Platelets

Random donor Platelets

Random donor Platelets

- $\leq 5.5 \times 10^{10}$ platelet in 50-70ml of plasma
- · Each unit of plt. expected to increase 5000-10000 plt.

Apheresis

Single donor platelet

- Plateletphresis
- ≤3x10¹¹ platelet in 300ml of plasma
- Stored at 20-24°C in shaker incubator
- Each unit of plateletphresis unit increase plt. 30000-60000.
 (1 U random plt expected to increase 5000-10000 plt)
- · Equals 6 random platelet
- Decrease donor exposure(safety)

تهیه پلاکت به روش پلاکت فرزیس

بلاکت تهیه شده نسبت به روش معمول حجم بیشتری دارد و فرد می تواند سالی ۲۴ بار اهدای بلاکت فرزیس داشته باشد

Pooled leukoreduced platelet

- 5-6 random platelet pooled in a close system
- Stored at 20-24°C for 3 days
- Benefit: leukoreduced
- Implication:
 - prevent alloimmunization
 - to minimize transmission of viral disease such as CMV

Platelet transfusion-indication

- Prophylaxis in otherwise healthy man
- · Treatment of patient on Chemotherapy
- Treatment of patient with fever, infection or antiplatelet therapy
- Treatment of patient with mucosal bleeding
- · Treatment of surgical patient
- Bleeding in patients with thrombocytopenia or functional platelet abnormality
- · After massive transfusion(RBC) and thrombocytopenia
- Cardiac surgery with extracorporeal circulation

TABLE 24-3. Transfusion Guidelines for Platelets in Neonates and Older Children 9,10

1.	Platelet count <10,000/µL with failure of platelet production.
2.	Platelet count <30,000/µL in neonate with failure of platelet production.
3.	Platelet count <50,000/µL in stable premature infant:
	a. With active bleeding, or
	b. Before an invasive procedure, with failure of platelet production.
4.	Platelet count <100,000/µL in sick premature infant:
	a. With active bleeding, or
	b. Before an invasive procedure in patient with DIC.
Wit	thout Thrombocytopenia
1.	Active bleeding in association with qualitative platelet defect.
2.	Unexplained excessive bleeding in a patient undergoing cardiopulmonary bypass.
3.	Patient undergoing ECMO with:
	a. A platelet count of <100,000/µL, or
	b. Higher platelet counts and bleeding.

PLATELET

- Thrombocytopenia
 - <10,000 in uncomplicated patients
 - <20,000 if febrile or septic
 - <50,000 if bleeding or undergoing major surgery
 - <100,000 for neurosurgery or ophthalmologic procedures
- Thrombocytopathy
 - Congenital defects
 - Drugs (ASA, Plavix)
 - External agents (cardiac bypass or ECMO)

Contraindications

- TTP/HUS
- Heparin-induced thrombocytopenia (HIT)
- ITP (relative contraindication)

Dosage:

- Adult dose: 1 random platelet unit/ 10 kg wt.
 (one dose=5 or more units of random platelets)
- Child: 5-10 ml/kg increases platelet count by 50000-100000

Causes of PLT refractoriness

• Nonimmune(80%) Immune(20%)

Fever HLA Antibodies

Sepsis ABO mismatch

Splenomegaly HPA Antibodies

• DIC Drug dependent autoantibodies

- GVHD
- Drug(Amphotricin-Vancomycin)
- Hemorrhage
- Prolonged platelet storage
- Veno-occlusive disease

Response evaluation to platelet transfusion:

^{*}Corrected count increment

Platelet transfusion increment

Modified Platelet Units

Leukocyte-reduced platelets

Irradiated

☑ Documentation

☑ Response

ATTENTION

- The most logical approach to reducing the risk of transfusion is only to use blood when it is strictly clinically necessary and there is no alternative
- Ref=ABC of transfusion