ADVANCED CARDIAC LIFE SUPPORT

BY DR. KAMBIZ SADEGI ZBMU ANESTHESIOLOGIST & INTERVENTIONAL PAIN FELLOWSHIP \circ ACLS is a series of evidence based \rightarrow simple enough \rightarrow memory and recall under stress moments

• AHA protocols are considered to be the gold standard and review every 5 yrs Chain of survival :

- Immediate *Recognition*, emergency response *Activation*
- \circ Early CPR emphasis \rightarrow chest compression
- Rapid *Defibrillation*
- Effective ACLS

•*Witnessed* • if alone Activate EMS Then CPR • if 2 rescuers Start CPR Second one activate EMS •Unwitnessed **Start CPR for 2 min** Activate EMS

Excellent CPR (high quality) :

o excellent chest compression :
Nonstop (less 10 s)
proper timing (100 – 120 /min)
force (5- 6 cm depth)
Avoid excessive ventilation
Complete chest recoil
cycling
Children /infant → at leat 1/3 AP diameter of chest
Adult: 2 hands on the lower half of sternum
Children :1 or 2 hands on the lower half of sternum
Infant :2 fingers or 2 thumbs

Chest compression adult : 30 : 2 children or infant : 1 rescuer : 30 : 2 ≥ 2 rescuer : 15 : 2

A CHANGE FROM A-B-C TO C-A-B

Cardiac arrest:

Can be caused by 4 rhythms :

1- VT

2-VF

3- Asystole

4- Pulseless Electrical Activity

Ventricular tachycardia

- .R-R interval usually regular, not always
- QRS not preceded by p wave.
- Wide and bizzare QRS.
- Difficult to find seperation between QRS and T wave Rate=100-250bpm

mmm

Torsades de Pointes

Ttwisting of points, is a distinctive form of polymorphic ventricular tachycardia characterized by a gradual change in the amplitude and twisting of the QRS complexes around the isoelectric line. Rate cannot be determined.

Ventricular fibrillation

Coarse VF

A severely abnormal heart rhythm (arrhythmia) that can be life-threatening. No identifiable P, QRS or T wave Emergency- requires Basic Life Support Rate cannot be discerned, rhythm unorganized

Asystole

a state of no cardiac electrical activity, hence no contractions of the myocardium and no cardiac output or blood flow. Rate, rhythm, p and QRS are absent

- Pulseless electrical activity (PEA)
- unresponsiveness and no palpable pulse
- some organized cardiac electrical activity.
- previously referred to as electromechanical dissociation

Treatable cause of cardiac arrest Hypoxia Hypovolumia Hydrogen ions(acidosis) Hypo / Hyper kalemia Hypothermia Toxin Toxin Tamponade Tension pneumothorax Thrombosis (pulmonary)

Defibrillation

Biphasic : 120 – 200 j

Monophasic : 360 j

AED

How to use?

If not- intubated / if intubated

Don't place over pacemaker

Apical pad / sternal pad

switch on defibrillator

Charge to 200 j

Warn all other rescuers to stand clear (are you clear?)

Visually check them

I am clear

Deliver shock

Restart CPR without checking pulse

Article

One-Shock Versus Three-Shock Defibrillation Protocol Significantly Improves Outcome in a Porcine Model of Prolonged Ventricular Fibrillation Cardiac Arrest

June 2006 · <u>Circulation</u> 113(23):2683-9 DOI: <u>10.1161/CIRCULATIONAHA.105.592121</u> Source · <u>PubMed</u>

Authors:

Wanchun Tang Weil Institue of Critical Care Medicine

Airway and ventilation:

Airway devices Basic: oropharyngeal AW nasopharybgeal AW Advance: **Endotracheal tube** Laryngeal mask airway Esopharyngeal tube

shutterstock.com + 1095530387

Size	Size No.	Dimension	Color
Neonatal	00	40 mm	Pirik
Infant	0	50 mm	Lt Blue
Child	1	60 mm	Black
Smail Adult	2	70 mm	White
Adult	3	80 mm	Green
Large Adult	4	90 mm	Yellow
XL Adult	5	100 mm	Red
XXL Adult	6	110 mm	

>

ENDOTRACHEAL TUBE

Age	Weight (kg)	ETT inner diameter
Newborn	< 1	2.5
Newborn	2	3.0
Newborn	3	3.0
Newborn	3.5	3.5
3 month	6	3.5
1 year	10	4.0
2 year	12	45
3 year	14	4.5
4 year	16	5.0
6 year	20	5.5
8 year	24	6.0
10 year	30	6.5
12 year	38	7.0
14 year	50	7.0
Adult	Woman	7.0
Adult	Man	8.0

LMA™ Size*	Patient Selection Guideline	
1	Neonates/infants up to 5 kg	
1½	Infants 5-10 kg	
2	Infants/children 10-20 kg	
2½	Children 20-30 kg	
3	Children 30-50 kg	
4	Adults 50-70 kg	
5	Adults 70-100 kg	
6	Adults over 100 kg	

Peripheral IV : usual route Centeral IV : best route (donot wait or waste time for cv line) Intraosseou : in pediatric , also adult Interatracheal

Amiodarone :

- VT, VF
- \circ 300 mg in 20 ml of N/S
- \circ then ~150~mg in 20 ml of N/S
- \circ then infusion of 1 mg/min for 6h and then 0.5 mg/ min for rest of time(max=2g)

Lidocaine :

 \circ VT , VF

 \circ 1- 1.5 $\,$ mg /kg bolus then 2-3 mg /min Can be give ETT

Magnesium sulfate

 \circ refractory VT or Vf caused by hypomagnesemia

- \circ torsa de pointes
- \circ 1-2 g over 2min

Epinephrine $\circ a, \beta 1, \beta 2$

- \circ HR \uparrow , BP \uparrow , SV \uparrow
- 1 mg every 3- 5 min

Adult Cardiac Arrest Algorithm – 2015 Update

Resuscitation in Special Situations :

- hypothermia
- pregnancy
- drowning
- ∎trauma
- ∎elcctricution
- ■LAST
- ∎covid -19

 Core temperature measurement : Tympanic - Rectal - Urine bladder
Classification: Mild 32 - 35 °C
Moderate 30 - 32°C
Severe < 30°C ECG in hypothermia J wave = Osborn wave

- CPR Modifications in Hypothermia :
- Begin CPR without delay
- \circ More force is needed to compress the chest wall sufficiently (\uparrow muscle rigidity)
- •The efficacy of most medications is temperature dependent (> 30 °C)
- $^{\circ}$ Avoid pharmacologic manipulation of pulse and blood pressure (> 30 $^{\circ}C)$
- ° Do not quit CPR until the patient rewarmed
- $^{\circ}$ After first 3 shocks, postpone next shocks until > 30 $^{\circ}$ C

 $^{\circ}$ Defibrillation attempts are usually unsuccessful until the core temperature is well above 30 $^{\circ}\mathrm{C}$

Rewarming :

°Recommended rewarming rates are between 0.5 to 2 °C/hr

•Passive External Rewarming:

Moderate (30°C to 32°C)

Hypothermia with a perfusing rhythm "Wear off the cold and wet clothes "

Cover with blankets

Increase the room temperature

•Active Rewarming:

Active External Rewarming

Active Core Rewarming

Active rewarming:

- Moderate to severe hypothermia (< 32 °C)
- Cardiovascular instability (cardiac arrest)
- Inadequate rate or failure to rewarm n
- Endocrinologic insufficiency
- Traumatic or toxicologic peripheral vasodilation
- Secondary hypothermia impairing thermoregulation

Techniques:

Warm-water lavage of the pleural, peritoneal, gastric and urine bladder cavity (43 °C)
Extracorporeal blood warming with partial bypass(ECMO)

■IV or introsseous (IO) fluid (43 °C)

■ humidified O2

Maternal Cardiac Arrest First Responder Activate maternal cardiac arrest team Document time of onset of maternal cardiac arrest Place the patient supine Start chest compressions as per BLS algorithm; place hands slightly higher on sternum than usual

Subsequent Responders

Maternal Interventions

Treat per BLS and ACLS Algorithms

- Do not delay defibrillation
- · Give typical ACLS drugs and doses
- · Ventilate with 100% oxygen
- · Monitor waveform capnography and CPR quality
- · Provide post-cardiac arrest care as appropriate

Maternal Modifications

- · Start IV above the diaphragm
- · Assess for hypovolemia and give fluid bolus when required
- Anticipate difficult airway; experienced provider preferred for advanced airway placement
- If patient receiving IV/IO magnesium prearrest, stop magnesium and give IV/IO calcium chloride 10 mL in 10% solution, or calcium gluconate 30 mL in 10% solution
- Continue all maternal resuscitative interventions (CPR, positioning, defibrillation, drugs, and fluids) during and after cesarean section

Obstetric Interventions for Patient With an Obviously Gravid Uterus*

- Perform manual left uterine displacement (LUD) displace uterus to the patient's left to relieve aortocaval compression
- Remove both internal and external fetal monitors if present

Obstetric and neonatal teams should immediately prepare for possible emergency cesarean section

- If no ROSC by 4 minutes of resuscitative efforts, consider performing immediate emergency cesarean section
- Aim for delivery within 5 minutes of onset of resuscitative efforts

*An obviously gravid uterus is a uterus that is deemed clinically to be sufficiently large to cause aortocaval compression

Causes

- \circ Bleeding /DIC
- Embolism (pulmonary, coronary , amniotic)
- Anesthetic complication
- \circ Uterine atony
- Cardiac disease(MI, ischemia ,Ao dissection, CMP)
- HTN(preeclampsia ,eclamsia)
- **•Placentaprevia**, placenta abraptio
- sepsis

■ Class I intervention:

- Give 100% oxygen
- Establish intravenous (IV) access *above the diaphragm*

• Assess for hypotension; warrants therapy has been defined as a systolic blood pressure <100 mmHg or 80% of baseline

• patient who is not in arrest, both *crystalloid* and colloid solutions increase preload.

CPR in pregnancy:

- CPR interventions aim to rescue always *FIRST the mother*
- Standard ACLS algorithms require *no modification*
- *No need* to adjust resuscitative *drug doses*

Prevent cardiac arrest:

■ Place the patient in the *full left-lateral position* to relieve possible compression of the inferior vena cava

• Maternal aortocaval compression can occur for singleton pregnancies at 20 weeks of gestational age

Cardiac arrest in pregnancy

- \circ place the patient supine
- start BLS
- \circ place hand slightly higher
- \circ donot delay defibrillation
- ventilation with 100% o2(intubation is essential in pregnant)
- $\circ \textbf{capnograph}$
- **OACLS drug doses**

- Left uterine displacement patient's left side with the 2handed technique
- The patient's right side with the 1-handed technique, depending on the positioning of the resuscitation team.
- If chest compressions remain inadequate after lateral uterine displacement or left-lateral tilt, immediate emergency cesarean section should be considered.

Airway :

 \circ Aspiration risk \rightarrow Early intubation & cricoid pressure

∘Laryngeal sweling → Small bore tube (0,5-1 mm \downarrow)

 \circ Hypoxia risk \rightarrow Preoxygenation

Breathing:

 $\circ\uparrow$ Oxygen demand \rightarrow hypoxia risk

 \downarrow Functional residual capacity \rightarrow faster desaturation

 \circ Elevated diaphram $\rightarrow \downarrow$ ventilation volume

Pregnant Prearrest On Magnesium Treatment

Patients receiving *magnesium* treatment (eclampsia) before cardiac arrest should be applied IV / IO

■10 ml 10% calcium chloride

■30 ml 10% calcium gluconate

- \circ iv above diaphragm
- **ohypovolemia ? (fluid bolus)**
- \circ ready for difficult AW
- **Rapid developing hypoxemia**(**FRC** \downarrow)
- \circ if patient receive MgS prearrest , stop Mg , start iv Ca-chloride 10% (10 ml)
- Or Ca-gluconate 10% (30ml)
- \circ continue CPR during and after C/S

Recommendation for emergency C/S

○ Maternal hypotension can result in *placental perfusion* ↓

• when the gravid uterus is large enough to cause maternal hemodynamic changes due to Aortocaval compression

 \circ emergency C/S regardless to fetus viability while resuscitating

 \circ if there is no ROSC by 4 min of CPR \rightarrow consider immediate C/S aim for delivery within 5 min of onset CPR

Drowning :

 The process of experiencing respiratory impairment from submersion / immersion in liquid
Immersion = to be covered in water
Submersion = the whole body under water

The drowning process **Breath holding** Laryngospasm Hypercarbia, hypoxaemia, acidosis Laryngospasm relaxes Inhalation of liquid Death

Idris et al Resuscitation 2003; 59:45-57

■ If water T> 6 °C, survival / resuscitation is extremely unlikely if submerged > 30 min
■ If water T≥ 6 °C, survival / resuscitation is extremely unlikely if submerged >90 min
Salt vs Fresh Water:

fresh water more dangerous than salt waters

• Prehospital:

CPR (initiate ventilation in water if possible)

ABC not CAB

No benefit of Heimlich maneuver

Prevent hypothermia

Cervical collar not needed if no trauma (cervical injury incidence only 0.5%)

• Hospital :

- Pulmonary support
 - ABG, electrolyte
 - Intubate alert victims if pulmonary function impaired (ALI PaO /FiO2 \leq 300)
 - Use of surfactant, ECMO, NO2 needs more evidence
 - CPAP or $PEEP \ge 10 \text{ cmH}_2O$ for best SaO_2 with lowest FiO_2
- Prophylactic antibiotics??
- No steroids

Traumatic cardiac arrest :

1- suspect cervical injury

2- in chest trauma suspect : tension pneumothorax , cardiac tamponade

 \rightarrow immediate thoracotomy & open CPR

3- volume resuscitation : 2 lit fluid through 2 large bore iv

■ *Electricution*

Danger of cardiac arrest :

- Major factors:
 - magnitude of current
 - duratuion of exposure

•Minor of factors :

- type of current (AC worse than DC)
- resistance of skin and tissue

< 1 mA : Tingling 50 - 30 mA : Lets go current 40 - 50 mA : Respiratory arrest 50 - 100 mA: VF

> 10 A : Prolonged apnea

Elecricity travels along NN and VV

Burns are often full thickness : may extend to bone , may requirement debridment, escharotomy ,fasciotomy , amputation

■ remember secondary injury:

- Cervical spine or other bony Fx
- •Head injury
- °myoglobulineuria

Management : •Turn off current °ABC •Protect cervical spine & treat injuris •Iv fluid for severe burn and myoglobineuria: $U/o \rightarrow 100 \text{ ml/h}$ mannitol 25 g iv then12.5 g/h for 6 h to urine alkalization \rightarrow sodium bicarb Surgical consultation

Local Anesthetic systemic Toxicity (LAST):

■ LA toxicity → CNS, heart → seizure, dysrhythmia, arrest Cardiac arrest → same algorithm but *lipid preparation* specific \circ *intralipid* → administered concurrently as part of ACLS Dose: 1.5 ml/kg of 20% or 100ml for >70 kg & 1.5 ml/kg for <70kg

Initial bolus : 0.25 ml/kg/min

Cardiac life support of patients with covid-19:

 $\circ~$ personal protective Equipment (PPE) and availability before CPR

 \circ High Efficacy Particular Air(HEPA) filter for bag-mask ventilation and mechanical ventilation

 \circ emphasize early intubation , use video laryngoscope , stop chest compression while intubation performed

 \circ if intubation is delayed (\rightarrow supraglottic device)

 \circ avoid prolonged resuscitation

Adult Immediate Post–Cardiac Arrest Care

Doses/Details

Ventilation/Oxygenation Avoid excessive ventilation. Start at 10-12 breaths/min and titrate to target PETCO₂ of 35-40 mm Hg. When feasible, titrate FIO_2 to minimum necessary to achieve $SpO_2 \ge 94\%$.

IV Bolus

1-2 L normal saline or lactated Ringer's. If inducing hypothermia, may use 4°C fluid.

Epinephrine IV Infusion:

0.1-0.5 mcg/kg per minute (in 70-kg adult: 7-35 mcg per minute)

Dopamine IV Infusion: 5-10 mcg/kg per minute

Norepinephrine

IV Infusion:

0.1-0.5 mcg/kg per minute (in 70-kg adult: 7-35 mcg per minute)

Reversible Causes

- Hypovolemia
- Hypoxia
- Hydrogen ion (acidosis)
- Hypo-/hyperkalemia
- Hypothermia
- Tension pneumothorax
- Tamponade, cardiac
- Toxins
- Thrombosis, pulmonary
- Thrombosis, coronary

•*Unconscious* \rightarrow advanced airway for *mechanical support* of breathing

- necessary \rightarrow *replace*: supraglottic airway used for initial resuscitation with an *endotracheal tube*
- several simple maneuvers :

• should *avoid* \rightarrow *ties* circumferentially around the *neck* \rightarrow potentially *obstructing* <u>venous return</u> from the brain \rightarrow *cerebral edema*

• *elevate* the head of the bed **30**° if tolerated \rightarrow *reduce* \rightarrow incidence of *cerebral edema*, *aspiration*, and *ventilatory-associated pneumonia*

• *Hyperventilation* or "*overbagging*" \rightarrow common after cardiac arrest \rightarrow should be *avoided* Hyperventilation \rightarrow *intrathoracic pressure* $\uparrow \rightarrow CO \downarrow$

 $PaCO_2 \downarrow$ seen : hyperventilation \rightarrow CBF \downarrow directly. Ventilation \rightarrow

10 to 12 breaths / minute and titrated \rightarrow **PETCO**₂ of 35 to 40 mm Hg or a PaCO₂ of 40 to 45 mm Hg

Sedation: Opioid, Midazolam, Muscle relaxants

Induced hypothermia:

Brain protection and other organs \rightarrow **hypothermia** \rightarrow **helpful** therapeutic \rightarrow patients who *remain comatose* (usually defined as a lack of meaningful response to verbal commands) after ROSC

Cooling onset : during 2h (median 8h) from ROSC

Duration: 12 - 24 h (up to 72 h in neonate)

IV ice-cold fluids (500 mL to 30 mL/kg of saline 0.9% or Ringer's lactate). Caseseries showed that the deterioration in oxygenation that often occurs after ROSC was not significantly affected by the infusion of cold fluids

patient's *core temperature* : *esophageal thermometer, bladder catheter* in nonanuric patients, or *pulmonary artery catheter*

should be cooled to $32^{\circ}C$ to $34^{\circ}C$

Pulmonary dysfunction :common.

(1)hydrostatic pulmonary edema from left ventricular dysfunction (2)noncardiogenic edema from inflammatory(3) infective, or physical injuries; (4)severe pulmonary atelectasis(5) aspiration $\rightarrow V/Q$ mismatch. severity $\rightarrow PaO_2/FIO_2$

■ A PaO₂/FIO₂ ratio of \leq 300 mm Hg \rightarrow ALI.

■chest x-ray : acute onset of bilateral infiltrates & PAWP≤18 mm Hg or no evidence of left atrial hypertension are common $\rightarrow ALI$ and *ARDS*. (PaO₂/FIO₂ ratio <300 or <200 mm Hg separates acute lung injury from ARDS, respectively).

■Tv 6-8 mi/kg ,(PEEP) and titrated FIO₂ are strategies

• beneficial effect of high FIO_2 on systemic oxygen delivery should be balanced with the deleterious effect of generating oxygenderived free radicals during the reperfusion phase

Fio2 decrease where o2 sat : 94-96%

■ Ventilation rate and volume → titrated to maintain high-normal Paco₂ (40 to 45 mm Hg) or PETCO₂ (35 to 40 mm Hg)

Typical Starting Dose (Then Titrate to Effect)

0.1-0.5 mcg/kg/min (In 70-kg adult, 7-35 mcg/min)

Useful for symptomatic bradycardia if atropine and transcutaneous pacing fail or if pacing is not available

Used to treat severe hypotension (eg, systolic blood pressure <70 mm Hg)

Useful for anaphylaxis associated with hemodynamic instability or respiratory distress¹⁵⁸

Norepinephrine 0.1-0.5 mcg/kg/min (In 70-kg adult, 7-35 mcg/min)

- Used to treat severe hypotension (eg. systolic blood pressure <70 mm Hg) and a low total peripheral resistance
- · Relatively contraindicated in patients with hypovolemia. It may increase myocardial oxygen requirements, mandating cautious use in patients with ischemic hear
- Usually induces renal and mesenteric vasoconstriction, in sepsis, however, norepinephrine improves renal blood flow and urine output^{159,160}

ted with comptomatic bradycordin

Phenylephrine 0.5-2.0 mcg/kg/min (In 70-kg adult, 35-140 mcg/min)

Used to treat severe hypotension (eg, systolic blood pressure <70 mm Hg) and a low total peripheral resistance

Dopamine 5-10 mcg/kg/min

)rug

Epinephrine
Phenylephrine 0.5-2.0 mcg/kg/min (In 70-kg adult, 35-140 mcg/min)

. Used to treat severe hypotension (eg, systolic blood pressure <70 mm Hg) and a low total peripheral resistance

Dopamine 5-10 mcg/kg/min

- · Used to treat hypotension, especially if it is associated with symptomatic bradycardia
- Although low-dose dopamine infusion has frequently been recommended to maintain renal blood flow or improve renal function, more recent data have failed to show a benefic from such therapy^{161,162}

Dobutamine 5-10 mcg/kg/min

- The (+) isomer is a potent beta-adrenergic agonist, whereas the (-) isomer is a potent alpha-1-agonist¹⁶³
- The vasodilating beta2-adrenergic effects of the (+) isomer counterbalance the vasoconstricting alpha-adrenergic effects, often leading to little change or a reduction in system
 vascular resistance
- Milrinone Load 50 mcg/kg over 10 minutes then infuse at 0.375 mcg/kg/min
 - · Used to treat low cardiac output
 - · May cause less tachycardia than dobutamine

Fluid administration as well as vasoactive (norepinephrine), inotropic (dobutamine), and inodilator (milrinone) \rightarrow titrated \rightarrow optimize BP, CO, systemic perfusion.

■ ideal targets for blood pressure or blood oxygenation · MAP≥65 mm Hg and an ScvO₂ ≥70%

■<u>hyperglycemia</u> Strategies : target *moderate glycemic control* (144 to 180 mg/dL [8 to 10 mmol/L]) may be considered in adult patients with ROSC after cardiac arrest

■ <u>steroids</u>: no (sepsis?)

■ CNS protection : seizure & neuroprotection

