Clinical approach to anemia

Mehrdad payandeh ,MD KUMS 20/12/2021

Definition

- Anemia The World Health Organisation defines anemia as a hemoglobin level < 130 g/L (13g/dL) in men and <120g/L (12g/dL) in women.
- The critical elements of erythropoesis are used for the initial classification of anemia.

4

Physiological regulation of red cell production

- EPO production
- Iron availability
- Proliferative capacity of the bone marrow
- Effective maturation of red cell precursors

Clinical Presentation

- Acute blood loss Hb/HCT does not reflect the volume of blood loss
 - Mild No symptoms. Enhanced oxygen delivery by changes in pH and increased CO₂
 - 10-15% hypotension and decreased organ perfusion
 - >30% postural hypotension, tachycardia
 - >40% hypovolemic shock: confusion, dyspnoea, diaphoresis

Clinical Presentation

- Acute hemolysis
 - Intravascular hemolysis: acute back pain, free hemoglobin in plasma and urine, renal failure
- Moderate anemia
 - Fatigue
 - Loss of stamina
 - Breathlessness
 - Tachycardia on physical exertion
 - Symptoms may not appear in young, healthy patients until hemoglobin is 7-8 g/dL

< 8 of 40 >

< 9 of 40 >

Examination

- Physical examination
 - · Build, nourishment
 - · Signs of disease
 - · Vitals fever, tachycardia, blood pressure
 - Pallor
 - Jaundice
 - Lymphadenopathy
 - Bone tenderness
 - · Petechiae
 - · CVS: Flow murmurs
 - RS: Dyspnoea
 - · Abdomen: Splenomegaly

Investigations

Hb, Hematocrit

- RBC count
- MCV (Hct x 10 / RBC x 10⁶) [90±8 fl]
- MCH (Hb x 10 / RBC x 10⁶) [$30 \pm 3 pg$]
- MCHC (MCH/MCV) [$33 \pm 2\%$]
- Reticulocyte count
- Indices vary with age, gender and pregnancy
- WBC count including differential count, neutrophil segment count
- Platelet count

d

Reticulocyte count

- A reliable measure of red cell production
- Patient's reticulocyte is compared with expected reticulocyte counts
- In established anemia, reticulocyte count of less than two-three times is an inadequate marrow response
- Reticulocyte correction needs to be done for anemia (1)
- And shift cells (2), If polychromatophilic cells are not seen on the blood smear, the second correction is not required.

Correcting Reticulocyte Count

- Reticulocyte requires two corrections
 - #1: Correction for anemia
 - * Corrected Retic.count = Reticulocyte count $\times \frac{Patient's\ Hb}{Hb\ expected}$
 - #2: Correction for reticulocyte count by shift count to get <u>Reticulocyte production index</u>

e

Corrected Reticulocyte Count

- Premature release of recticulocytes are due to EPO stimulation
- Severe chronic hemolytic anemia RPI increases upto six to sevenfold. Confirms appropriate response to EPO, normal functioning marrow and iron availability
- If reticulocyte production index < 2, suggests a defect in marrow proliferation or maturation

Iron Supply and Storage

• Serum Iron: 50-150 μg/dL

TIBC: 300-360 μg/dL

- Serum ferritin (also an acute phase reactant)
 - 15-20 μg/dL Lack of Iron stores
 - Women: ~30 μg/dL
 - Men: ~ 100 μg/dL
 - 200 μg/dL adequate iron stores
- Serum Transferrin saturation: 25-50%

Bone Marrow Studies

- Required in patients with normal iron status with hypoproliferative anemia
- Can be used to diagnose primary bone marrow diseases: myelofibrosis, infiltrative diseases

Hematocrit	Production Index	Reticulocytes (incl. corrections)	Marrow M:E ratio 3:1 2:1 - 1:1 1:1 - 1:2
45	1.0	1	
35	2.0-3.0	4.8%/3.8/2.5	
25	3.0-5.0	14%/8/4.0	
15	3.0-5.0	30%/10/4.0	1:1 - 1:2

Hypoproliferative anemias

- > 75% of all anemias
- Absolute or relative bone marrow failure
- Causes:
 - Mild to moderate iron defeciency
 - Inflammation
 - Marrow damage
 - Ineffective EPO production (impaired renal function, IL-1, hypothyroidism, diabetes mellitus, myeloma)
 - Normocytic normochromic, occasionally microcytic hypochromic

Hypoproliferative anemias

- Anemia of chronic inflammation:
 - S. Iron: Low
 - TIBC: normal or low
 - · Transferrin saturation: Low
 - S. Ferritin: Normal High
- Iron defeciency anemia
 - S. Iron: Low
 - TIBC: High
 - Transferrin: Low
 - S. Ferritin: Low

Maturation disorders

- Nuclear maturation disorders:
 - Folate or Vitamin B12 defeciency, drug damage (methotrexate), myelodysplasia
 - Alcohol causes macrocytosis with variable degree of anemia due to folate defeciency
- Cytoplasmic maturation disorders:
 - · Severe iron defeciency, thallassaemias
 - Iron defeciency: Low reticulocyte index, microcytosis, Serum Iron profile can be used to differentiate from thallassaemias

Maturation disorders

- Myelodysplasia:
 - Macro or microcytosis
 - · Iron ring in mitochondria
 - · Sideroblasts on marrow stain
 - Iron studies can help differentiate from other conditions

Blood Loss / Hemolytic Anemia

- Red cell production indices > 2.5 or normal
- Polychromatophilic macrocytes on smear
- Red cells indices: Normocytic to Macrocytic due to increased reticulocytes
- Acute blood loss: Not associated with increased reticulocyte production because of time required for EPO production
- Subacute blood loss: Moderate reticulocytosis
- Chronic blood loss: Iron defeciency with increased red cell production

Hemolytic Disease

- Least common form of anemia
- High reticulocyte count marrow able to sustain erythropoesis with efficient recycling of iron in case of extravascular hemolysis
- Intravascular hemolysis Paroxysmal nocturnal hemoglobinuria - Loss of iron may limit marrow response
- Hemoglobinopathies like sickle cell disease/thallassemias present a mixed picture and may have a high reticulocyte count which is low compared to marrow hyperplasia.

Hemolytic Anemias

- Acute: specific patterns like autoimmune hemolysis, glutathione reductase.
- Inherited hemolytic anemias: have a lifelong history of typical of disease process
- Chronic hemolytic diseases like hereditary spherocytosis may present with complication of increased red cell destruction (bilrubin gallstones, splenomegaly).
- Susceptible to aplastic crises

Hemolytic Anemias

- Differential diagnosis of acute or chronic hemolysis requires careful investigation of family history and specialised laboratory tests like hemoglobin electrophoresis or screening for red cell enzymes.
- Acquired defects in red cell survival may requires testing of indirect antiglobulin test, cold agglutinin titres to detect hemolytic antibodies or complement mediated destruction.

Case

- 43yrs / F, k/c/o Beta Thal Carrier
- Generalised weakness x 7 days
- Hb 6.4g% (17/6)
- 7.0/26.4% on admission, 7 days later after starting Mumfer
- Tot RBC: 4.42 x 10⁶ cells/mm³
- MCV 60 fl [78-98]
- MCH 16pg [27-32]
- MCHC 27% [31-34]
- TLC: 8000cells/cumm, N₄₆ L₄₄ M₇ E_{2.1} B_{0.1}
- Plt: 289,000/cumm

Press Too to exit full screen

Case

- RBC: Microcytic Hypochromic with many ovalocytes, few dacryocytes and schistocytes
- WBC: normal maturation
- Platelets: adequate in number
- Parasites: not seen
- Corrected Retic count = 4 x 9/12 = 3

a