

WEANING, TRIAL OFF & DECANNULATION

VA – VV ECMO

دكتر محمد حقيقي

استاد تمام بیهوشی

قوق تخصص مراقبتهای ویژه

دانشگاه علوم پزشکی گیلان

1400 زمستان

EDITORIAL Open Access

How I wean patients from veno-venous extra-corporeal membrane oxygenation

Francesco Vasques¹, Federica Romitti², Luciano Gattinoni^{2†} and Luigi Camporota^{1*†}

Perspective

Weaning from veno-arterial extra-corporeal membrane oxygenation: which strategy to use?

Sofia Ortuno¹, Clément Delmas², Jean-Luc Diehl¹, Clotilde Bailleul¹, Aymeric Lancelot¹, Mahassen Naili³, Bernard Cholley⁴, Romain Pirracchio⁴, Nadia Aissaoui^{1,5}

Intensive Care Med DOI 10.1007/s00134-015-3663-y

WHAT'S NEW IN INTENSIVE CARE

Nadia Aissaoui Aly El-Banayosy Alain Combes How to wean a patient from veno-arterial extracorporeal membrane oxygenation

EDITORIAL Open Access

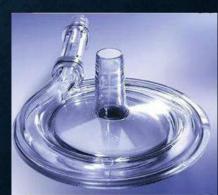
How I wean patients from veno-venous extra-corporeal membrane oxygenation

Francesco Vasques¹, Federica Romitti², Luciano Gattinoni^{2†} and Luigi Camporota^{1*†}

OBJECTIVES

- What is weaning & Trial off
- Criteria for weaning & Trial off
- Weaning protocols
- Trial off protocols
- Criteria for Decannulation
- Protocols for decannuation

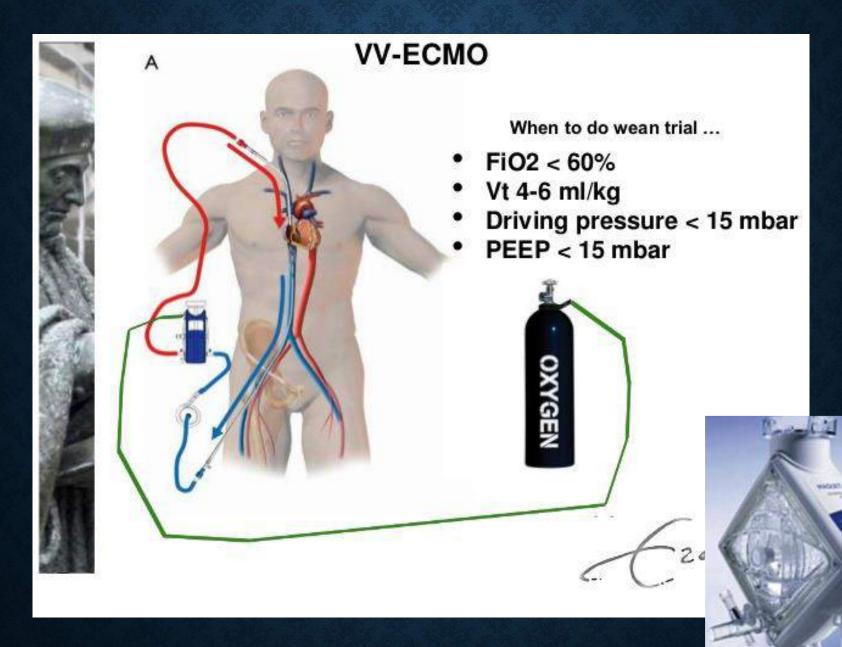
Parameter	Score		
ACUTE CARDIOGENIC SHOCK DIAGNOSIS GROUP (SELECT ONE OR MORE)			
Myocarditis	3		
Refractory VT/VF	2		
Post heart or lung transplantation	3		
Congenital heart disease	-3		
Other diagnoses leading to cardiogenic shock requiring VA ECMO	0		
AGE (YEARS)			
18-38	7		
39-52	4		
53-62	3		
≥63	0		
WEIGHT (kg)			
≤65	37		
65-89	2		
≥90	0		
ACUTE PRE-ECMO ORGAN FAILURES (SELECT ONE OR MORE IF REQUIRED)			
Liver failure*	-3		
Central nervous system dysfunction ¹	-3		
Renal failure	-3		
Chronic renal failure ⁹	-6		
DURATION OF INTUBATION PRIOR TO INITIATION OF ECMO (h)			
≤10	0		
11-29	-2		
≥30	-4		
Peak inspiratory pressure ≤ 20 cm H ₂ O	3		
Pre-ECMO cardiac arrest	-2		
Diastolic blood pressure before ECMO ≥ 40 mm Hg ⁴	3		
Pulse pressure before ECMO ≤ 20 mm Hg ¹	-2		
HCO ₃ before ECMO ≤ 15 mmol/L ¹	-3		
Constant value to add to all calculations of SAVE-score	-6		
Total score	-35 to 17		
Total SAVE-Score	Risk Class	Survival (%)	
HOSPITAL SURVIVAL BY RISK CLASS			
>5	E	75	
1-5		58	
-4 to 0	III	42	
-9 to -5	IV	30	
≤-10	V	18	

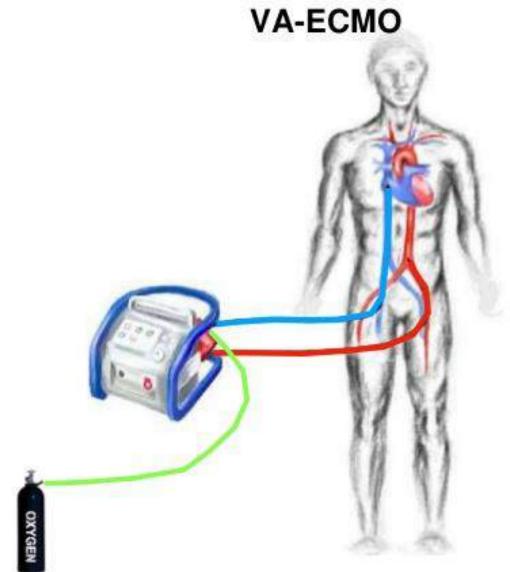

TABLE 85.2 The "RESP" Score for Pre-ECMO Pre	ediction of Survival at 30 Days Afte	r Initiation of VV ECMO for Respiratory Failure	
PARAMETER		Score	
AGE, YEARS			
18-49	0		
50-59	-2		
≥60	-3		
Immunocompromised status*	-2		
MECHANICAL VENTILATION PRIOR TO INITIATION OF	ECMO		
<48 h	3		
48 h to 7 days	1		
>7 days	0		
ACUTE RESPIRATORY DIAGNOSIS GROUP (SELECT ON	ILY ONE)		
Viral pneumonia	3		
Bacterial pneumonia	3		
Asthma	/II		
Trauma and burn	3		
Aspiration pneumonitis	5 :		
Other acute respiratory diagnoses	-1		
Nonrespiratory and chronic respiratory diagnoses	0		
Central nervous system dysfunction [†]	-7		
Acute associated (nonpulmonary) Infection [‡]	-3		
Neuromuscular blockade agents before ECMO	-1		
Nitric oxide use before ECMO	-1		
Bicarbonate infusion before ECMO	-2		
Cardiac arrest before ECMO	-2		
PaCO ₃ , mm Hg			
<75		0	
≥75	+1		
PEAK INSPIRATORY PRESSURE, cm H ₂ O			
<42	0		
≥42 ————————————————————————————————————	-1		
Total score	-22 to 15		
Total RESP Score	Risk Class	Survival	
HOSPITAL SURVIVAL BY RISK CLASS			
≥6	E	92%	
3-5	II.	76%	
-1 to 2	· · · · · · · · · · · · · · · · · · ·		
-5 to −2	33%		
5-6 V		18%	

WEANING

- Weaning -
 - a slow decrease in pump flow or gas flow or FiO2 of ECMO over hours to days in an effort to take away mechanical heart/lung support from the patient.
- Trial off -
 - To disconnect patient from the ECMO for few hours to a day without removing cannula

WEANING General Comments – VA ECLS


- NOT promoted for initial 24 hours
 [helpful for patient to recover from pre-ECLS hypoxia]
- Weaning NOT continued if inotrope doses need increasing beyond "tolerance" levels
- Weaning, if all parameters stable, can progress –
- Weaning usually slower
- Assess "arterial waveform" reflects cardiac contractile function
- Gradually switching ventilatory parameters to 'normal' settings
- Monitor ACT closely & keep within 'new range'
- Monitor blood gases and lactate closely



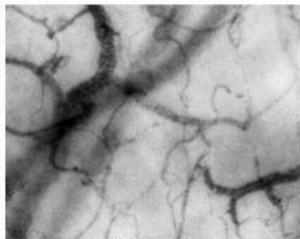
VENTILATORY MANAGEMENT 'Weaning ECLS'

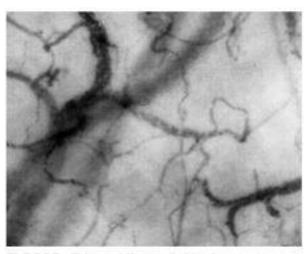
With successful weaning of ECLS, assisted ventilation parameters altered to 'normal' settings

(zafus

VA-ECMO

Decrease Bloodflow:

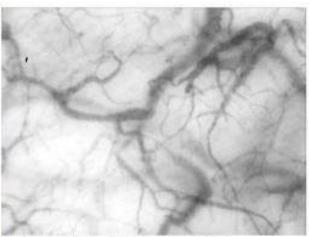

Approx. 1 I/min for LV failure Approx. 0.5 I/min for RV failure



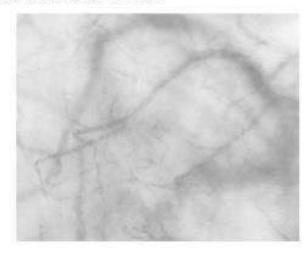
(zafing

Patient with cardiac recovery, ECMO blood flow 50%

ECMO Bloodflow 6.1 I/min MAP 77 mmHg



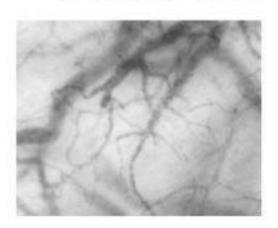
ECMO Bloodflow 3 I/min MAP 74 mmHg



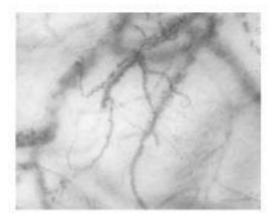
(Zafus


Patient with cardiac recovery, ECMO blood flow 50%

ECMO Bloodflow 5.0 l/min MAP 75 mmHg



ECMO Bloodflow 2.2 l/min MAP 70 mmHg



Ezafins

Patient WITHOUT cardiac recovery, ECMO blood flow 50%

ECMO Bloodflow 4.5 I/min MAP 65 mmHg

ECMO Bloodflow 2.1 I/min MAP 45 mmHg

(Zafing

Conclusion from these studies:

During weaning of vaECMO, there is a poor coherence between macrocirculation and microcirculation.

Echocardiography and microcirculatory monitoring seem to correlate

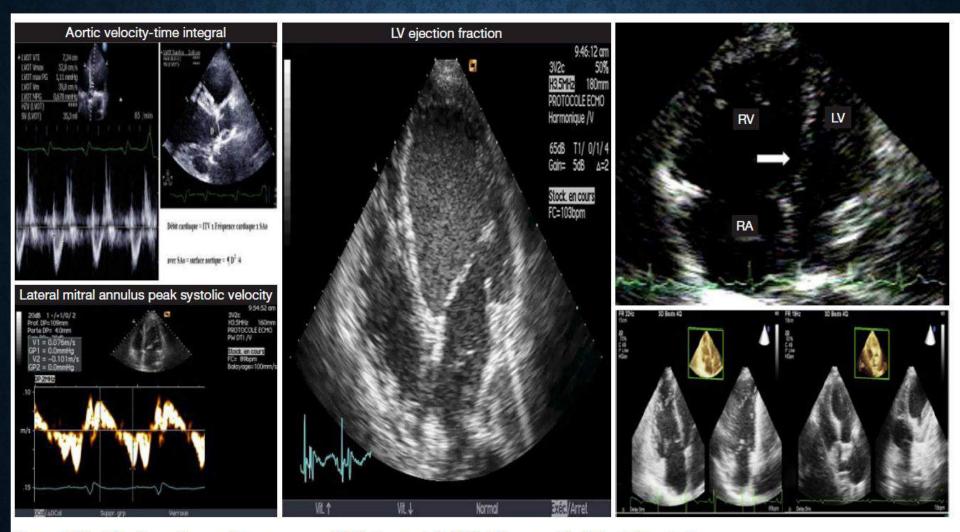


Figure 1 Useful echocardiographic parameters. LV, left ventricle; RV, right ventricle; RA, right atrium.

Table 1 Studies reporting main predictors of successfully weaning from VA ECMO

Study/authors	Numbers of patients	Weaning ratio	Categories	Parameters	Cutoff		
Aissaoui et al., 2011	51	20/51	Clinical	Pulse pressure	>52±12 mmHg		
			ΠE	Aortic velocity-time integral	>10 cm		
				LVEF	>20–25%		
				Lateral mitral annulus peak systolic velocity	>6 cm/s		
Cavarocchi et al., 2013	21	6/21	TEE	LV and RV function	Qualitative		
Pappalardo et al., 2015	42	18/42	Clinical	Pulse pressure	>59 mmHg		
Li <i>et al.</i> , 2015	123	69/123	Biological	Lactate at baseline	<9.4±4.2 mmol/L; >0.55±0.4 mmol/L		
				Lactate clearance at H6-H12			
Huang <i>et al.</i> , 2018	46	38/46	ΠE	RVEF	<24.6%		
VA ECMO, veno-arterial extracorporeal membrane oxygenation; TTE, transthoracic echocardiography; TEE, transesophageal echography; LV, left ventricle; RV, right ventricular; EDV, end-diastolic volume; ESV, end-systolic volume; EF, ejection fraction.							

WEANING PARAMETERS

WHEN TO TRIAL OFF - VA ECMO

- Cardiac function slowly begins to improve
- Flows begins to fall
- Eventually good gases & tissue perfusion on minimal ECMO suuport
- Improved LV function
- Minimal inotropic support & ventilator support
- PA Pressures less than half systemic
- Special case (bleeding, sepsis, "window")

WEANING PARAMETERS FOR VA ECMO

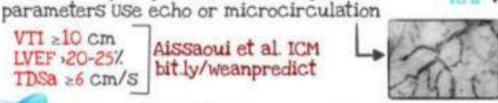
- Increased pulsatility Increased pulse pressure > 20
- Improved Mean arterial prresure > 70 in adult
- Echo evidence
 - Improved LV contractibility
 - Decreased MR, minimal MR
 - VTI of > 10 cm
 - TDSa of > 6 cm
- Improved tissue perfusion SVO2 > 70
- PH > 7.35

weaning the ECMO patient

veno-venous ECMO

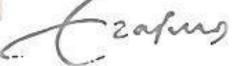
do not decrease blood flow Set sweep gas flow off at reasonable MV setting maintain for couple of hours (practical: overnight)

veno-arterial ECMO


do NOT decrease gas flow set reasonable MV setting decrease Blood Flow for 5-15 min ~1 1/min for LV failure ~ 0.5 l/min for RV failure do NOT solely rely on macrohemodynamic

VTI >10 cm LVEF >20-25% TDSa ≥6 cm/s

Aissaoui et al. ICM bit_ly/weanpredict



based on @ecmophile talk *BEACH2018 *IFAD2018 graphics @FOAMecmo on behalf of @Fluid.Academy

Courtesy of Velia Marta Antonini

Step 1: The etiology of cardiac failure must be compatible with myocardial recovery Step 2: Hemodynamic stability: - The patient should have recovered a pulsatile arterial waveform for at least 24 hours - Baseline MAP >60 mmHg in the absence or with low doses catecholamine and/or pulsed pressure > - The patient should have recovered from major metabolic disturbances Step 3: **Pulmonary function** should not be severely impaired If PaO2/FiO2 <100 mmHg when FiO₂ of the ECMO gas flow is set at 21%, consider bridging the patient from VA- to VV-ECMO Step 4: The patient must tolerate a full weaning trial * Hemodynamic and echocardiographic assessment whereas ECMO flow is gradually decreased to 66%, and to 33% of its baseline value and then to a minimum of 1-1.5 L/min

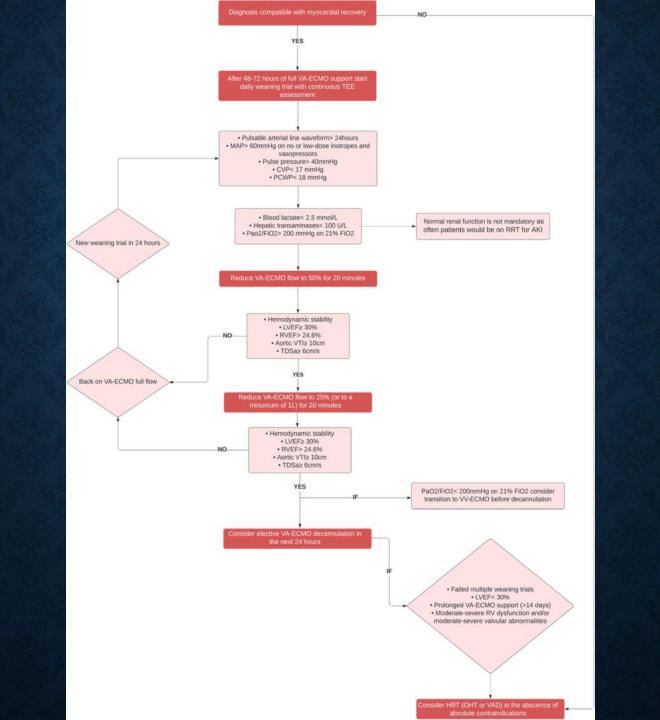
If steps 1, 2, 3 and 4 are validated and the patient has under minimal ECMO support:

- LVEF of ≥ 20-25%, an aortic VTI of ≥12 cm and a TDSa ≥6 cm/s

3D-RV ejection fraction (if feasible)>24.6%
 ECMO removal should be considered

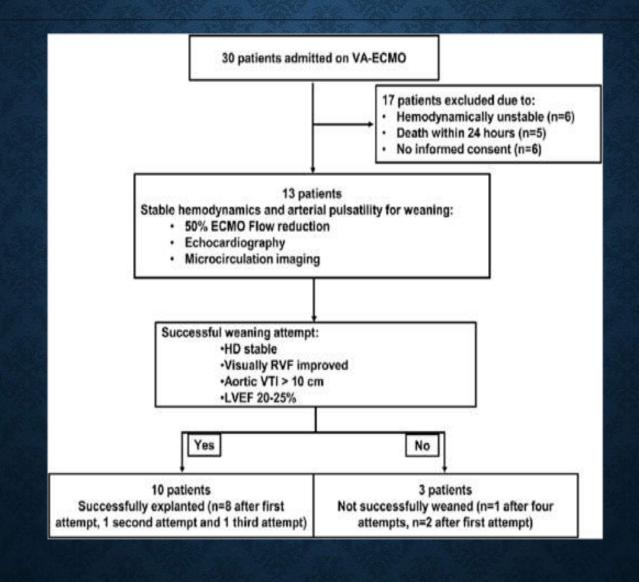
Step 1: The etiology of cardiac failure must be compatible with myocardial recovery

Step 2: Hemodynamic stability


- The patient should have recovered a pulsatile arterial waveform for at least 24 hours
- Baseline MAP > 60 mmHg in the absence or with low doses catecholamine and/or pulsed pressure
- The patient should have recovered from major metabolic disturbances

<u>Step 3</u>: Pulmonary function should not be severely impaired If $PaO_2/FiO_2 < 100$ mmHg when FiO_2 of the ECMO gas flow is set at 21%, consider bridging the patient from VA- to VV-ECMO

<u>Step 4</u>: The patient must tolerate a full weaning trial Hemodynamic and echocardiographic assessment whereas ECMO flow is gradually decreased to 66%, and to 33% of its baseline value and then to a minimum of 1—1.5 L/min


If steps 1, 2, 3 and 4 are validated and the patient has under minimal ECMO support:

- LVEF of ≥ 20—25%, an aortic VTI of ≥ 10 cm and a TDSa ≥ 6 cm/s
- or CI > 2.4 L/min/m², PCWP < 18 mmHg and CVP < 18 mmHg
- 3D-RV ejection fraction (if feasible) > 24.6%
- -> ECMO removal should be considered

ECMO Weaning Protocol

- ICU
 - ECMO flow down to 1-1.5 L/min for 5 min
 - Assess CVP, PAP, CO
 - TTE to assess LV, RV function
- OR
 - 3000-5000 U heparin
 - ECMO flow down to 1 L/min
 - Assess CVP, PAP, CO
 - TEE to assess LV, RV function, septal position
- Explant ECMO if appropriate

WEANING STRATEGY FOR VA ECMO

Not attempt to wean ECMO in the first 72 hours

Renal and hepatic function should be restored

Pulmonary blood oxygenation should not be compromised

Hemodynamic stability on ECMO: MAP > 60 mmHg while no or low-dose vasoactive agents

A pulsatile arterial waveform should be maintained for at least 24 hours

The patient must tolerate a full weaning trial (MAP > 60 mmHg)

Left and right ventricular echo parameters (VTI > 10cm, Sa > 6cm/s...) must be assessed at minimal ECMO flow

Conclusion:

In vvECMO:

- Do not decrease ECMO blood flow
- Set ECMO gasflow off at reasonable vent setting
- Maintain this for couple of hours (practical: overnight)

In vaECMO:

- Do not decrease ECMO gasflow
- Set reasonable vent setting
- Decrease ECMObloodflow to 0.5 1.0 liter/min for 5-15 min
- Do not solely rely on macrohemodynamic parameters
- Use echo or microcirculation

Ezafung

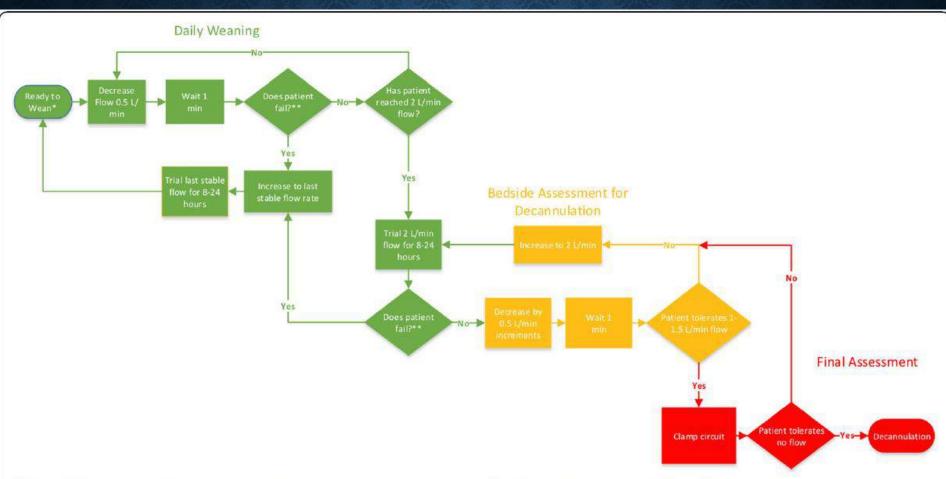


Fig. 1 VA-ECMO weaning process. *Criteria required to initiate weaning trial: (1) Phenotype is compatible with recovery (2) End-organ function is improving (3) Pa02/Fi02 > 100 (4) Vasopressors and intropes at low levels (norepinephrine $\leq 4 \,\mu$ g/min, dobutamine $< 5 \,\text{mcg/kg/min}$) **Any of the following criteria constitutes failure of a weaning trial: (1) MAP falls below 65–70 mmHg or decreases by more than 10 mmHg from baseline (2) Significant increase in intracardiac filling pressures (3) Deterioration in respiratory status

WEANING

VV ECMO weaning:

- i. Circuit flow need not be reduced at any stage for weaning and therefore, no additional heparin is required
- ii. Weaning VV ECMO is achieved by progressively reducing the Fresh Gas Flow to the oxygenator. An increase in lung ventilation is required to ensure adequate CO₂ clearance.
- iii. In normal circumstances there is no requirement to wean the blender FiO2 as part of the weaning process
- iv. It is usual to observe the patient to be stable for 4-24 hours with the Fresh Gas Flow to the ECMO circuit at 0 L/min.
- v. Echocardiography is not required

Table 2: Criteria or weaning trial

Cardiac

- Heart rate >120/min
- Systolic blood pressure > 90 mm Hg or pulse pressure > 40 mm Hg, mean arterial pressure > 70 mm Hg
- Central venous pressure <12 mm Hg
- Urine output > 0.5 cc/kg/hr (ARF case excluded)⁴
- IE (Inotropic equivalent) < 10
- Good tissue perfusion as revealed by blood lactate < 3 mol/L and SvO₂ > 65%
- X-ray chest improving
- 2D echo—improved EF > 40%

Respiratory

- CXR is improving
- Lung compliance improve: compliance >0.5 mL/kg
- ABG—on rest ventilator setting with moderate ECMO support
 - PaO₂ of >60 mm Hg
 - PaCO₂ of <50 mm Hg
 - pH > 7.35
- Successful 100% oxygen challenge test

Table 3: Assessment of weaning and trial off

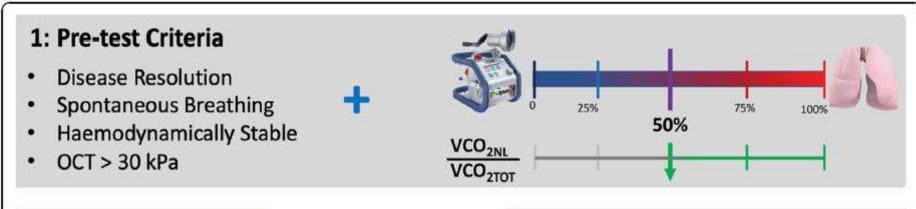
Hemodynamic parameter

- Mean arterial pressure >70 mm Hg, pulse pressure >40
- Heart rate >60 and < 110. The heart rate should be maintained nearly to prior weaning. Any sudden change should be considered seriously.

Blood gas parameter

- pO₂—>60
- pCO₂—<45 sometimes up to 60 is accepted especially during long ECMO run if pH is maintained
- pH—>7.3
- SPO₂—>90%
- EtCO₂—35–40

Ventilator parameters


- Lung compliance—>0.5 cc/kg
- Peak inspiratory pressure > 30

Tissue perfusion

- Lactate level—20 or 4 mmol/L
- ScvO₂—70%
- Urine output—> 100 mL/hr

- Increase ventilator support to a setting acceptable off VV-ECMO.
- Turn off the sweep gas but continue pump rate to maintain extracorporeal blood flow.
- Monitor systemic arterial oxygen saturation and pCO₂. If parameters remain adequate after one hour of ventilation at an acceptable setting with the sweep gas turned off, the patient is ready to come off VV-ECMO.
- Stop heparin infusion once the decision has been made to come off VV-ECMO. The circuit can be removed after 4 hours

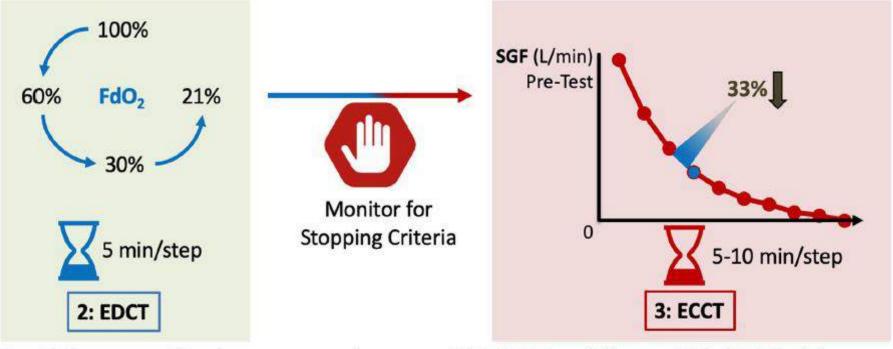
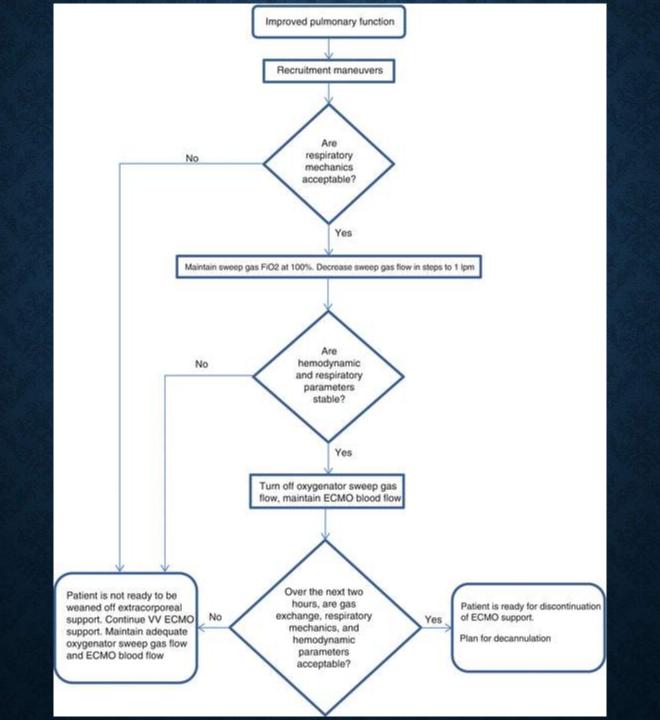
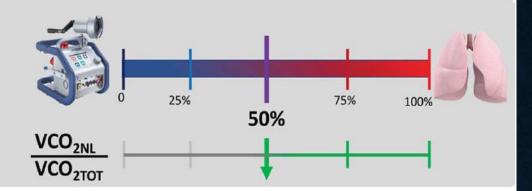
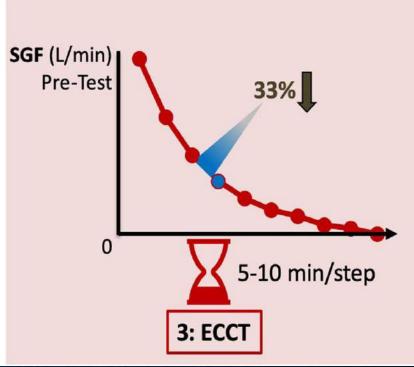



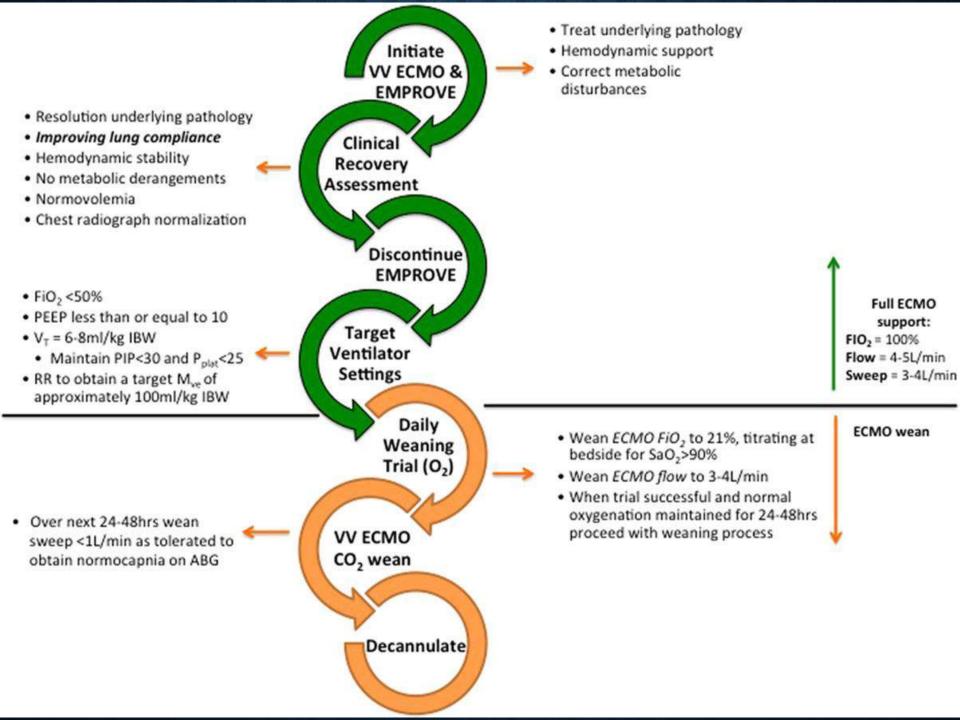
Fig. 1 ECMO weaning test. FdO2 = fraction on oxygen in the sweep gas; EDCT = ECMO de-oxy challenge test; ECCT = ECMO CO2 challenge test; OCT = oxygen challenge test (FiO2 100% on the ventilator); VCO2NL = VCO2 natural lung; VCO2ML = VCO2 membrane lung; SGF = sweep gas flow


	Weaning trial	Criteria for ECMO withdrawal
Venovenous ECMO	F _{EC} O ₂ = 21%	Pplat < 25 to 30 cm H_2O with TV around 6 ml/kg and PEEP < 12 cm H_2O
	Sweep gas flow 1 L/minute or stopped	and $PaO_2 > 70$ mmHg on $FiO_2 < 60\%$ or $PaO_2/FiO_2 > 200$ mmHg
	Duration: several hours	and pH > 7.3 with PCO ₂ < 50 mmHg
		and no acute cor pulmonale
Arteriovenous ECMO	F _{EC} O ₂ = 21%	Pplat < 25 to 30 cm H_2O with TV around 6 ml/kg and PEEP < 12 cm H_2O
	Sweep gas flow 1 L/minute	and $PaO_2 > 70$ mmHg on $FiO_2 < 60\%$ or $PaO_2/FiO_2 > 200$ mmHg
	Reduce pump blood flow by steps of 0.5 L/minute	and pH > 7.3 with PCO ₂ < 50 mmHg
	Duration: several hours	and no acute cor pulmonale
	11	without left ventricular failure:
	<u> </u>	left ventricular ejection fraction > 25 to 30%
		velocity-time integral > 12 cm

F_{EC}O₂, oxygen fraction delivered by the extracorporeal circuit; Pplat, plateau pressure; PEEP, positive end-expiratory pressure; TV, tidal volume.


1: Pre-test Criteria

- Disease Resolution
- Spontaneous Breathing
- Haemodynamically Stable
- OCT > 30 kPa



ECMO Learning Package

WEANING ECMO1,2,4,7

Decision made by consultants & CT surgeons

V-V	V-A
 Maintain ECM0 flow rate Re-establish properties full ventilation Turn off 02 to oxygenator 6hr stability then decannulation 	 Heparin so ACT >400 to decrease risk clotting Decrease pump flow 1 litre while ventricular function assess by TOE Period of low flow ECMO before decannulation Respiratory function is a concern: turn off gas flow (Only at circuit flows ≤1.5L/min) and assess oxygenation achieved using the ventilator exclusively. Note: in this situation the circuit flow acts as a right-to-left shunt. If adequate oxygenation and CO₂ removal can be maintained in the presence of this shunt it is likely that respiratory failure can be managed without ECMO. If 02 good & C02 managed by ventilation consider decannulation

WEANING PARAMETERS

VA ECLS	VV ECLS
Maintain SvO ₂ ≥ 65%	Maintain O ₂ Sats ≥ 85-90%
Wean for SvO ₂ ≥ 70%	Wean for O ₂ Sats ≥ 92%

TRIAL OFF

Trial OFF ECLS

- Method & Duration of trial off depends on type of support: VA vs VV
- Duration of Trial Off varies
 - Usually not to exceed 1-3 hours
- ECLS circuit flow increased to decrease clot formation

VA TRIAL OFF

- Clamp off
 - Venous Line
 - Bridge
 - Arterial Line
- Disconnect GREEN pipe + Increase flow
- Release clamps (ABV) every 10 min to flush the cannula
- ACT every 30 min
- Do not leave pump unattended
- Trial Off for 2 4 hrs

VA TRIAL OFF - MONITORING

- Draw ABG & SVO2 or lactate at 30 minutes, 90 mins & 180 mins during trial off
- Monitor MAP, Pulse pressire, pulse rate, saturation
- 2 D echo with color doppler before trial off after 1 hr & after 3 hrs
 - LV size
 - LVEF
 - Mitral regurgitation
 - VTI & TDSA

TRIAL OFF VV VS VA

VV

Sweep gas off

VA

- Heparinise patient
 & circuit
- clamp off & clamp on
- sweep gas off
- flush cannulae
 Q10min
- Surgical decannulation

TRIAL OFF VA ECMO

- Call surgical team & plan
- Go back to pump till surgical team is ready

METHOD

VA ECMO

Step 1: once decide

- Up grade ventilator setting to moderate level
- Start small dose Inotrope if required

Step 2:

- Wean the pump flow by 10 ml/kg/hr
- Continue to wean support until minimum flow
- > After any change one should evaluate for 1 hour up to 3 hour
- Reduce the gas flow as proportional in blood flow

Minimum flows

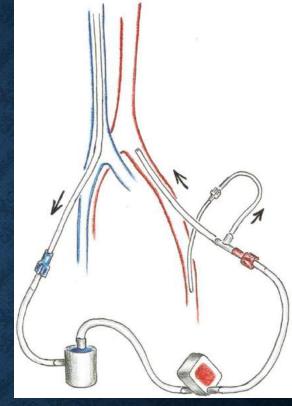
Neonates 50 - 100 ml/min

Pediatric 100 - 200ml/min

Adults 500 - 1000 ml/min

Complication: sluggish flow, clots

Step 3:


- Reduce the ECMO Fio2 to 60%
- > Keep the patient on idle flow for around 2 hours
- Heparin / ACT should be maintained upper end of the ordered range
- Increased potential for circuit clot as blood will remain within the tubing for longer period of time

VV ECMO

Step 1:

Decrease the flow to moderate

- Wean the pump flow by 20 ml/kg/hr
- Continue to wean support flow is reduced to ½ the ECMO flow

Step 2:

Upgrade ventilator setting

- Once you come on half the flow, upgrade ventilator setting to moderate level
- Ventilator setting should be- maintain Spo2 of ~ 90%
- Fio2 decrease it to 40 %
- ❖ PEEP decrease to 6 8cmH20
- ❖ TV around 6 ml/kg
- ❖ Peak inspiratory pressure of < 30 cmH20</p>

Minimum flows

Neonates 500 – 1000 ml/min

Pediatric 1 – 1.5 l/min

Adult 2.5 – 3 l/min

Step 3:

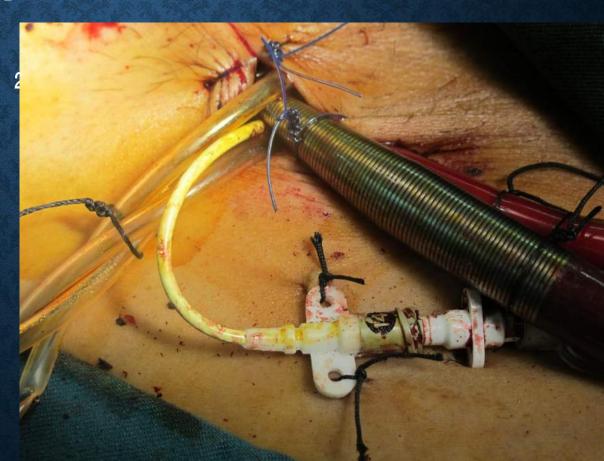
Reduce Fio2 of ECMO

- ➤ Reduce Fio2 of ECMO till you reach Fio2 of 40 % on ECMO
- ➤ Maintain Spo2 of 90 %

Step 4:

Decrease gas flow

- Finally come down on gas flow .Reduce gas flow to maintain of 0.5 l/min in adults
- ► In pediatric to maintain flow of 0.3 l/min
- ► In neonates to maintain flow of 0.1 l/min
- Heparin / Act should be maintained or increased as pump flow is weaned (upper end of the ordered range)
- Increased potential for circuit clot as blood will remain within the tubing for longer period of time


MONITORING

- HgB
- SvO₂
- Lactate (unit dependant)
- Heart rate
- Urine output
 - · CO₂
 - pO₂
- 2 D echo

- Good gasses off ECMO
- Cardiovascular stability
- Assemble team
 - Co-ordinator
 - Specialist
 - Fellow

- Transfer all drugs to patient
- Anaesthesia
 - Ketamine
 - Atracurium
- Gown and gloves

- Clean skin with and cannula with Betadine
- Drape as for surgery
- Insert a single horizontal mattress suture around the cannula

- Cut all sutures
- Clamp off the circuit
- Assistant clamps the cnnula as close to the skin as possible
- Assistant pulls cannula as Surgeon ties the mattress suture

- Tip of cannula sent for culture
- Dry dressing
- Repeat procedure for other cannula
- Give Vancomycin

DECANNULATION VA

Most important

Dressing of Cannula

The most common mortality in ECMO is infection Vascular lines are the most common sites for infection.

POST DECANNULATION

- CXR is mandatory
- Recheck bloods
 - ABG
 - Haematology
 - Biochemistry

QUESTIONS?

1)ECMO TRANSPORT

- 1)CLINICAL FACTORS IMPACTING DECISION FOR ECMO TRANSPORT
- 2)OTHER FACTORS IMPORTANT IN PLANNING FOR ECMO TRANSPORT
- 3) EQUIPMENT FOR ECMO TRANSPORT
- 4)SUPPLIES
- 5)BLOOD PRODUCTS
- 6) MEDICATIONS
- 7) VEHICLES

1) CLINICAL FACTORS IMPACTING DECISION FOR ECMO TRANSPORT

- ☐ Hospital to hospital /INTER-FACILITY:
- Primary Transports
- Secondary Transports
- ☐ In hospital /INTRA-FACILITY
- > travel to radiology, the operating room, or the cath lab

Interfacility Transport

- Primary Transports

situation in which the Transport team is required to perform cannulation for ECMO support at the referring facility and then transport the patient to an ECMO center

- Secondary Transports

situations in which the patient is already supported with ECMO at the referring facility and needs to be transported to another center

Clinical factors that impact a patient's candidacy for ECMO transport

1- criteria for any ECMO support

2-Criteria for interfacility transfer.

Geographic

Weather related

- Ground ambulance feasible for distances approximately ≤ 250 miles (400 km)
- Helicopter feasible for distances approximately ≤ 400 miles (650 km)
- Fixed wing aircraft usually necessary for missions > 400 miles (650 km)

 The impact of the weather on the suitability of air transport for a given mission should always be a pilot decision with no input from medical team

Aircraft/Vehicle Availability and Capabilities

	Ground Ambulance	Helicopter	Fixed Wings Aircraft
Space for team and	Sufficient	More limited	Variable
equipment	(4-5 team members)	(3-5 team members)	(≥ 4 team members)
Noise	Relatively Little	Very loud	Loud
Distance range for reasonable	Up to 400 km	Up to 650 km	Any distance
transport times			
		(depending on aircraft	
		and weather)	
Weight Limitation	Unlimited	Limited	Variable
		(impacted by distance	(depending on aircraft
		and weather)	and conditions)
Loading and securing	Relatively easy	Relatively easy	Variable
equipment and ECMO			(depending on equipment
circuit/patient			and aircraft model)
			· ·

Aircraft/Vehicle Availability and Capabilities

- 1) Any vehicle/aircraft must have appropriate electrical supply capability for ECMO and all other equipment for the duration of the mission
- 2) Climate control
- 3) Reliable oxygen supply (other than transport cylinders)
- 4) Suction
- 5) Compressed Air
- 6) Adequate Lighting
- 7) Adequate space for necessary team members and equipment

Personnel/Team Composition

- 1) Cannulating Physician
- 2) ECMO Physician
- 3) ECMO Specialist
- 4) Transport Nurse
- 5) Transport Respiratory Therapist

Cannulating Physician

- Primary responsibility is safe and proper placement of ECMO cannula(s)
- For neonatal/pediatric ECMO, this is typically a pediatric surgeon or pediatric cardiovascular surgeon
- For adult ECMO, this may be general surgeon, vascular surgeon, cardiovascular surgeon
- In some circumstances, ECMO team may choose to work with a surgeon and surgical team from the referring hospital if such collaboration facilitates timely patient transfer

ECMO Physician

- Must have substantial experience in management of ECMO patients
- On arrival at referring facility, promptly assesses patient and pertinent clinical data while ECMO Specialist and other team members prepare for cannulation or change to transport ECMO circuit.
- Decision
- Obtains informed consent for ECLS and for transport from next-of-kin
- Assumes and directs medical management of the patient during cannulation/change of ECMO circuit, and throughout the transport
 - Administration of heparin bolus at time of cannulation
 - Administration of any needed deep sedation/analgesia
 - Management of mechanical ventilation, vasoactive infusions, etc.

ECMO Specialist

- Primary responsibility for ensuring all equipment on checklist is functional and loaded at time of departure
- Primary responsibility for communication of blood product requirements with referring hospital staff prior to ECMO transport team's departure
- Primary responsibility for priming/preparation of transport ECMO circuit upon team's arrival at referring hospital
- Primary responsibility for management of ECMO circuit during all phases of transport
- Must possess extensive experience in ECMO circuit/patient management

Transport Nurse

- Administers medications, fluids, and blood products, and assists in patient assessment
- Primary responsibility for patient nursing care during all phases of transport
- To allow cross-tasking, it is strongly recommended that the transport nurse also has experience with ECMO patient/circuit management

Qualification of transportation staff

For the escorting physician, we assessed the following items (yes/no), based on DIVI recommendations [13, 14]:

- Three years of clinical training in a field with intensive care tasks,
- 2. Six months verifiable full-time on an ICU,
- Qualification as a pre-hospital emergency physician in the EMS according to local regulations,
- 4. Attending a 20-h course "intensive care transportation"

Due to the specific requirements of intensive care transports, the responsible paramedic also must have an additional qualification [13]. We assessed the following items (yes/no):

- 1. Professional qualification: paramedic
- At least 3 years in an emergency service in a full-time or a time comparable to professional experience
- 3. Attending a 20-h course "intensive transport for emergency services personnel"

: mannequin preparation; percutaneous cannulation and starting ECMO; preparation for transportation; transportation; therapy in the department of intensive care.

- A checklist should be completed before departure.
- The circuits and equipment utilized for mobile ECMO

- A mobile ECMO system shall consist of the following minimum components:
- 1. Suitable blood pump, centrifugal or roller
- 2. Membrane oxygenator, appropriate for the patient size
- 3. Device(s) for heating and regulating circuit blood temperature (less critical for adult transports)
- 4. Medical gas tanks, regulators, hoses, connectors, flow meters, and blenders for provision and adjustment of blended sweep gas to the oxygenator
- 5. Venous and arterial pressure monitoring device(s), according to center-specific practices

- 6. Point-of-care anticoagulation monitoring equipment (e.g., Activated Clotting Time)
- 7. Emergency pump or manual control menchanism in the event of primary pump failure or power failure
- 8. Uninterruptable power source(s) capable of meeting the electrical power needs of all equipment during transfer between vehicles and in the event of vehicle power source failure.
- 9. Portable ultrasound machine, if not provided by the referring facility.

 Mobile ECMO personnel must be familiar with the voltage, current, and power requirements of all equipment. Checklists should include this information for rapid reference prior to and throughout the patient transfer

Transport equipment, separate from the ECMO system, shall include:

- 1. Patient ventilator, appropriate for the patient's size and clinical needs
- 2. Point-of-care device for monitoring blood gases, electrolytes, glucose, hemoglobin

4. Medication and fluid infusion pumps

- i. Backup components of critical items must be available
- ii. Patient/ECMO transport stretcher

 Patient. The stretcher will enable the safe movement of the patient, in compliance with accepted patient transport standards.

- Supplies
- Bloodproducts
- Medications

- □If cannulation is intended at the referring center, all necessary instrument sets shall be either carried or made available from the referring facility:
 - 1. Cannulation surgical set / vascular surgery set
 - 2. Head lamp(s)
 - 3. Electrical cautery system
 - 4. Additional suction set-up for dedicated surgical use
 - 5. Operating room back table, kick bucket, tray tables, etc
 - 6. Optional bedside ultrasound device for assistance with cannulation

MEDICATIONS

Medications will vary with team preference and formulary inventory, and will require case-by-case tailoring to the patient's needs.

VEHICLES

- A. Potential complications during transport between hospital and ambulance, and ambulance and aircraft
- 1. Sudden vertical or horizontal movement, altering patient position
- 2. Cannula movement, affecting surgical site integrity or cannula tip position
- 3. Circuit kinking, compression, or catching
- 4. Equipment movement or trauma
- $oldsymbol{B_{oldsymbol{\iota}}}$ The use of roller pumps for ECMO transport is not recommended.
- **C.** Additional features of vehicle or aircraft in addition to standard ACLS and safety requirement

QUESTIONS?

