CML TREATMENT

M,RAZAVI MD.INTERNIST HEMATOLOGIST&ONCOLOGIST

INTRODUCTION

- Review of pathophysiology
- History of IMATINIB
- Which of TKI is better for initiation??
- Response criteria
- Defining failure ,suboptimal response and optimal response
- Discontinuation of TKI therapy ??
- Imatinib in pregnancy
- Diagnostic challenge at presentation

Initial treatment with a TKI

GOALS OF CARE

- Achieve clinical remission
- Maintain long-term disease control
- Avoid disease progression to accelerated phase or blast crisis
- > Optimizing quality of life by limiting treatment-related toxicity

 For certain patient who achieve a sustained and deep molecular remission, a trial of discontinuation of therapy to achieve a treatment-free remission is a long term goal of management

The stem cells

- Ph chromosome is found on myeloid monocytic, erythroid <u>megakaryocytic</u> **B-cells** sometimes T-cell

Prognostic scoring systems for newly diagnosed chronic myeloid leukemia*

Scoring system	Calculator Link	Risk groups	
EUTOS score ^[1]	www.leukemia- net.org/content/leukemias/cml/eutos_score/	Low risk, high risk	
Euro (Hasford) score ^[2]	www.leukemia- net.org/content/leukemias/cml/euro_and_sokal_score/	Low risk, intermediate risk, high risk	
Sokal score ^[3]	www.leukemia- net.org/content/leukemias/cml/euro_and_sokal_score/	Low risk, intermediate risk, high risk	
The EUTOS long-term survival score (ELTS) ^[4]	vww.leukemia- net.org/content/leukemias/cml/elts_score/	Low risk, intermediate risk, high risk	

ELTS was derived from survival data that reflect treatment of CML with TKI and it provides the best discrimination for the probabilityof CML-specific death

additional chromosome abnormalities in Ph+ cells (ACA) +8, a second Phchromosome (+Ph), i(17q), +19, -7/7q-, 11q23, or 3q26.2 aberrations, and complex aberrant karyotypes predict a poorer response to TKIs and a higher risk of progression

Prognostic scoring systems for newly diagnosed chronic myeloid leukemia*

Scoring system	Calculator Link	Risk groups	
EUTOS score ^[1]	www.leukemia- net.org/content/leukemias/cml/eutos_score/	Low risk, high risk	
Euro (Hasford) score ^[2]	www.leukemia- net.org/content/leukemias/cml/euro_and_sokal_score/	Low risk, intermediate risk, high risk	
Sokal score ^[3]	www.leukemia- net.org/content/leukemias/cml/euro_and_sokal_score/	Low risk, intermediate risk, high risk	
The EUTOS long-term survival score (ELTS) ^[4]	vww.leukemia- net.org/content/leukemias/cml/elts_score/	Low risk, intermediate risk, high risk	

ELTS was derived from survival data that reflect treatment of CML with TKI and it provides the best discrimination for the probabilityof CML-specific death

additional chromosome

In the last version of ELN, mentioned as a "warning" Currently, the panel recommends classifying ACA and treating patients with high-risk ACA as high-risk patients.

progression

- In 1960, Drs. Nowell and Hungerford
- The discovery of the Philadelphia chromosome and BCR-ABL, supported in part by NCl, demonstrated for the first time that a genetic alteration could cause cancer.

- A few years later, Nora Heisterkamp, M.D discovered that when the Philadelphia chromosome forms, two genes that are normally separated get fused together.
- The hybrid (called a <u>fusion</u> <u>gene</u>) is known as BCR-ABL.

In 1998, Dr. Druker and his colleagues tested imatinib in a phase 1 clinical trial partially funded by NCI.

CHOOSING A TKI

pathophysiology

Management of Patients with Inadequate Response to Imatinib

- Should be evaluated for adherence to treatment and possible drug interaction
- Evidence of loss of response should be confirmed with repeat studies befor treatment changes are initiated
- If there is a 1-log increase in bcr-abl1 after achieving mmr (mr3), this should be confirmed by repeating q pcr in one to three months

NCCN Guidelines Version 2.2021 Chronic Myeloid Leukemia

Clinical Trial > J Clin Oncol. 2016 Jul 10;34(20):2333-40. doi: 10.1200/JCO.2015.64.8899. Epub 2016 May 23. Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naïve Chronic Myeloid Leukemia Patients Trial Jorge E Cortes ¹, Giuseppe Saglio ², Hagop M Kantarjian ², Michele Baccarani ², Jiří Mayer ² , Concepción Boqué ² , Neil P Shah ² , Charles Chuah ² , Luis Casanova ² , Brigid Bradley-Garelik ² , George Manos ² , Andreas Hochhaus ² PMID: 27217448 PMCID: PMC5118045 DOI: 10.1200/JCO.2015.64.8899 Free PMC article Free PMC article PMID: 27217448 PMCID: PMC5118045 DOI: 10.1200/JCO.2015.64.8899 , George Manos², Andreas Hochhaus² , Concepción Boqué ², Neil P Shah ², Charles Chuah ², Luis Casanova ², Brigid Bradley-Garelik ² Jorge E Cortes ¹, Giuseppe Saglio ², Hagop M Kantarjian ², Michele Baccarani ², Jiří Mayer ² **Chronic Myeloid Leukemia Patients Trial** Dasatinib Versus Imatinib Study III Heatineire 14

INITIAL TREATMENT with imatinib:

- 400 mg once daily with a meal and a large glass of water
- Dispersed in water or apple juice
- Should be adjusted for liver or renal impairment
- Concurrent use of strong CYP3A4 inducers should be avoided
- At higher dosage, providing benchmarks for deep molecular responses

TOXICITY

- Cytopenia,Edema,Nausea,Diarrhea,Rash,Muscle cramp (generally mild)
- HEART FAILURE
- HEPATOTOXICITY

CHOOSING A TKI

No individual TKI is preferred for initial treatment of all patients with CP CML

Selection of a TKI based on :

- CML risk score
- Side effect profile
- Comorbid illnesses
- Patient preference
- Cost
- Imatinib and second-generation TKIs achieve comparable rates of OS,PFS,AEs

- The first generation TKI was tested in the IRIS study
- At higher dosage, providing benchmarks for deep molecular responses
- Served as control arm in six prospective pharmaceutical companysponsored trials testing dasatinib, nilotinib, bosutinib, and radotinib
- In CP a lower dose of 300mg can be used if 400mg is not tolerated
- A dose of 400 mg twice daily can be used in AP, but in patients with progression to more advanced disease a change to second generation TKI (2GTKI) is recommended

Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia N Engl J Med 2017; 376:917-927

TKI Common toxicities

IMATINIB

Cytopenia ,Muscle cramps,fatigue,edema,nausea,diarrhea,rash, 4 P, 4 BMD

NILOTINIB

Coronary, cerebral, peripheral vascular disease, prolongedQTc

interval;hyperglycemia;pancreatitis

DASATINIB

Pleural effusion, pulmonary

Response criteria

European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia

	Optimal	Warning	Failure
Baseline	NA	High-risk ACA, high- risk ELTS score	NA
3 months	≤10%	>10%	>10% if confirmed within 1–3 months
6 months	≤1%	>1-10%	>10%
12 months	≤0.1%	>0.1-1%	>1%
Any time	≤0.1%	>0.1-1%, loss of ≤0.1% (MMR) ^a	>1%, resistance mutations, high-risk ACA

For patients aiming at TFR, the optimal response (at any time) is BCR-ABL1 \leq 0.01% (MR⁴).

A change of treatment may be considered if MMR is not reached by 36–48 months.

NA not applicable, ACA additional chromosome abnormalities in Ph+ cells, *ELTS* EUTOS long term survival score.

^aLoss of MMR (BCR-ABL1 > 0.1%) indicates failure after TFR

NCCN Guidelines Version 2.2021 Chronic Myeloid Leukemia

EARLY TREATMENT RESPONSE MILESTONES^{i,j}

BCR-ABL1 (IS)	3 months 6 months		12 months ^k
>10% ^I	YELLOW		ED
>1%–10%	GREEN		YELLOW
>0.1%–1%	GREEN		LIGHT GREEN
≤0.1%	GREEN		

COLOR	CONCERN	CLINICAL CONSIDERATIONS	RECOMMENDATIONS
RED	TKI-resistant disease	 Evaluate patient compliance and drug interactions Consider mutational analysis 	Switch to alternate TKI (<u>CML-5</u>) and evaluate for allogeneic HCT
YELLOW	Possible TKI resistance	 Evaluate patient compliance and drug interactions Consider mutational analysis Consider bone marrow cytogenetic analysis to assess for MCyR at 3 mo or CCyR at 12 mo 	Switch to alternate TKI (<u>CML-5</u>) or Continue same TKI (other than imatinib) (<u>CML-G</u>) ^m or Increase imatinib dose to a max of 800 mg and Consider evaluation for allogeneic HCT
LIGHT GREEN	TKI-sensitive disease	 If treatment goal is long-term survival: >0.1%–1% optimal If treatment goal is treatment-free remission: ≤0.1% optimal 	 If optimal: continue same TKI If not optimal: shared decision-making with patient^{n,o}
GREEN	TKI-sensitive disease	 Monitor response (<u>CML-D</u>) and side effects 	Continue same TKI (<u>CML-G</u>) ^p

Criteria for TKI Discontinuation

- . Age ≥18 years.
- Chronic phase CML. No prior history of accelerated or blast phase CML
- On approved TKI therapy for at least 3 years
- Prior evidence of quantifable *BCR-ABL1* transcript
- Stable molecular response (MR4; BCR-ABL1 ≤0.01% IS) for ≥2 years, as documented on at least 4 tests, performed at least 3 months apart
- Access to a reliable qPCR test with a sensitivity of detection of at least MR4.5 (BCR-ABL1 ≤0.0032% IS) and that provides results within 2 weeks.
- Monthly molecular monitoring for the rst 6 months following discontinuation, bimonthly during months 7–12, and quarterly thereafter (indefnitely) for patients who remain in MMR (MR3; *BCR-ABL1* ≤0.1% IS).

• Prompt resumption of TKI within 4 weeks of a loss of MMR with monthly molecular monitoring until MMR is reestablished, then every 3 months thereafter is recommended indefnitely for patients who have reinitiated TKI therapy after a loss of MMR. For those who fail to achieve MMR after 3 months of TKI resumption, BCR-ABL1 kinase domain mutation testing should be performed, and monthly molecular monitoring should be continued for another 6 months

Long term follow-up of patients in TFR

Report from the American Society of Hematology Congress 2019

TFR1 : late relapses (> 2 years in TFR1, MMR loss)

SOCIETY OF

PNERICAN

JEMAIO

00

Table 1. Recommended TRT doses approved for children and proportion of patients achieving h	Table	a 1. Recommended	TKI doses approved	for children and proportion	of patients achieving MN
---	-------	------------------	--------------------	-----------------------------	--------------------------

Recommended TKI dose for CMI CP	Proportion of pediatric patients with CML-CP treated with first-line TKI who achieved MMR				
treatment	Patients, no.	12 mo	18 mo	24 mo	References
Imatinib 340 mg/m²/dose, once daily 300 mg/m²/dose, once daily 260 mg/m²/dose, once daily	51 140 44	NR 42%* 31%†	NR 59%* 55%*	NR 69%* 60%*	16 14 15
Nilotinib 230 mg/m²/dose, twice daily	25	64%*	68%§	NR	18
Dasatinib 60 mg/m²/dose, once daily	84	52%*	65%*	70%*	17

NR, not reported.

*Results are reported as a cumulative rate at the indicated time point. †Results are reported as a response rate at the indicated time point. §Cumulative response rate by data cutoff at 16.6 mo. options in the case of a suboptimal response (Figure 1). Several factors must be taken into consideration when choosing a TKI.

cohorts demonstrate that molecular responses at months 6 and 12 months are deeper with 2G-TKIs, but at 18 months are similar

Table 2. Initial and follow-up evaluations

Evaluations at diagnosis	Evaluations at follow-up visits		
Complete blood count (including differentials) and comprehensive metabolic profile	Complete blood count (including differentials) and comprehensive metabolic profile		
Spleen and liver size (should be measured as below costal margin)	Spleen and liver size (should be measured as below costal margin)		
Bone marrow aspirate and biopsy (differentials and karyotype)	Bone marrow every 6 mo until complete cytogenetic response		
Baseline molecular genetics (qRT-PCR for BCR-ABL1) with transcript type (eg, e14a2)	Molecular monitoring from peripheral blood by qRT-PCR (monthly in the first 3 mo, every 3 mo thereafter)		
Categorize stage of disease (CML-CP, CML-AP, CML-BP), identify additional risk factors (eg, additional chromosomal aberrations)	Classify response according to treatment time as recommended by the ELN ⁴⁴ or NCCN ⁴² (Table 3) In advanced phases of CML, also monitor bone marrow cytogenetics to detect clonal evolution		

qRT, quantitative reverse transcription.

PEDIATRIC CHRONIC MYELOID LEUKEMIA

Thank you