The Benefits of

Lactose & Human Milk Oligosaccharide (HMO)

in Infant Nutrition

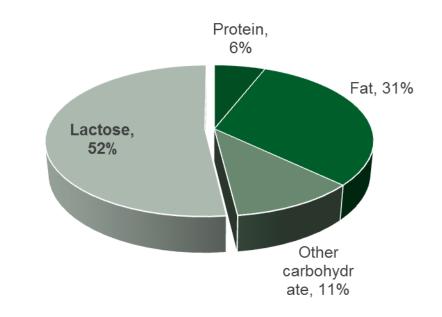
Mohammad Gharagozlou MD

Allergy & Clinical Immunology Dept.

Children's Medical Center

Tehran University of Medical Sciences

19.5.2022


LEARNING OBJECTIVES

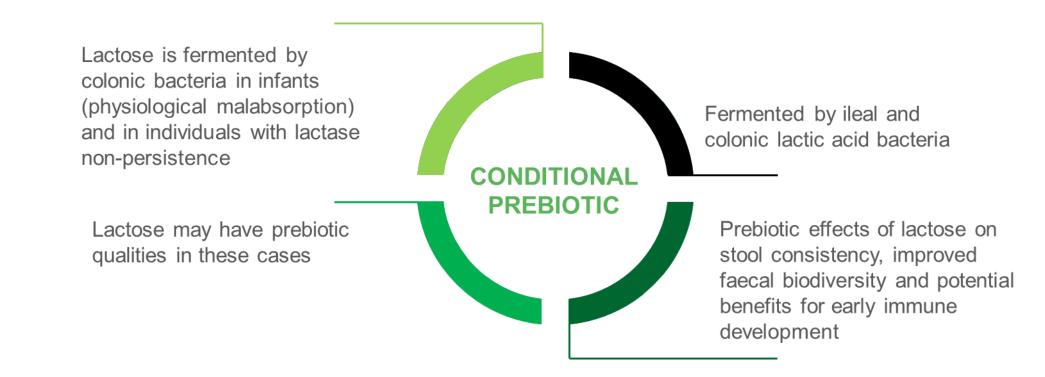
- □ What are lactose and HMO?
- Lactose intolerance(LI), clinical manifestations and differences with CMPA
- The role of LF formula
- The categories of HMO found in human milk
- The most abundant HMO in human milk
- □ The structure of HMO and difference between them and other oligosaccharides
- Factors influencing the composition of HMO
- Human milk versus other mammalian milks Why it is the gold standard?

LACTOSE (β-galactosyl-1,4 glucose

- Main carbohydrate in human and mammalian milk
- Human milk contains 7.5 g/100 ml of lactose, compared to about 5 g/100 ml in cow's and other mammalian milk
- Young infants do not absorb
 - all of the ingested lactose from breast milk (physiological lactose malabsorption)
- A term infant is able to digest
 - about 60-70 g of lactose /day (= 1 litre of breast milk)

Macronutrients distribution in breast milk

LACTASE-PHLORIZIN HYDROLASE


Commonly called lactase, hydrolyses lactose into D-glucose and D-galactose

- Small intestinal brush border enzyme (160 kDa)
- Lactase gene located on chromosome 2
- Member of b-galactosidase family
- Expressed by mature enterocytes (highest expression in mid-jejunum)
- Also hydrolyses phlorizin and some dietary glycolipids
- Peak lactase activity in term infants

- 1. 5. Dahlqvist A 1961
- 2. 6. Dahlqvist A et al. 19638. Norén O et al. 2001
- 3. 9. Antonowicz I & Lebenthal E 1977
- 4. 10. Buller HA et al. 1989
- 5. 11. Herzler SR and Saviano DA 1996
- 6. 7. Auricchio S et al. 1965

19/05/2022

LACTOSE AS A 'CONDITIONAL PREBIOTIC'

Francavilla et al. 2012 Szilagyi A 2004 West et al. 2015

CLINICAL CLASSIFICATION OF LI

The four main clinical types:

Developmental lactase deficiency

Congenital lactase deficiency - alactasia

Lactase non-persistence (LNP) - hypolactasia

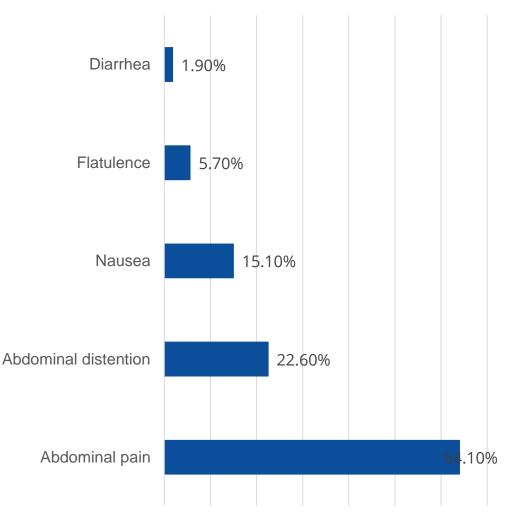
Secondary lactase deficiency

CAUSES & MECHANISM OF SECONDARY LACTASE DEFICIENCY IN INFANTS

Diagnosis	Mechanism
Gastroenteritis	Transient (postenteritic malabsorption)
Cow's milk enteropathy	Transient (villous damage)
Celiac disease	Transient (villous damage)

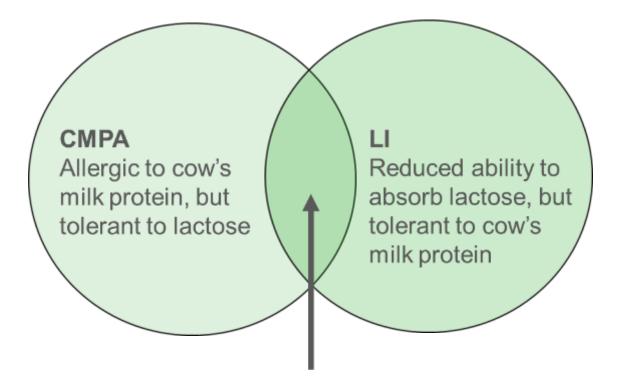
CLINICAL PRESENTATION OF LI

Symptoms generally occur within 30-60 min of ingesting lactose containing foods. Differs between infants and older children

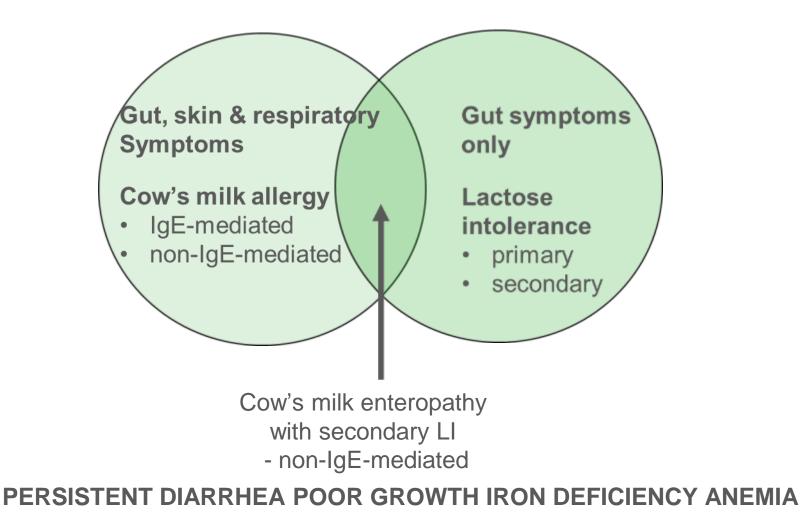

INFANTS

- More prone to develop diarrhea (lacks the ability to compensate by colonic reabsorption)
- A low fecal pH (<5.5) may cause perianal skin irritation and excoriation

OLDER CHILDREN & ADULTS


 Re-absorption of fermentation products reduces the osmotic load and significantly reduces diarrhea

N=98; Age range 10-12 years


Heine RG et al. 2017 Hegar B & Widodo A, 2015

CLINICAL OVERLAP BETWEEN CMPA AND LI

Cow's milk enteropathy with secondary lactase deficiency Allergic to cow's milk protein <u>and</u> reduced ability to absorb lactose

CMPA & LI – TWO DIFFERENT CONDITIONS

TYPICAL SYMPTOMS OF GASTROINTESTINAL CMPA AND LI

	Gastrointestinal CMPA	LI
Diarrhoea	+++	+++
Vomiting	++	-
Rectal bleeding	+	-
Perianal rash	++	+++
Eczema	+	-
Poor weight gain	+++	++

19/05/2022

GENERAL TREATMENT PRINCIPLES

Continue breastfeeding in breastfed infants

In formula-fed infants, a limited trial of lactose-free

formula may be indicated (e.g. following viral gastroenteritis)

Reduce (do not eliminate completely) the intake

of lactose-containing foods

Small amount of lactose in divided doses usually tolerated

In older children and adolescents, up to 12-24g of lactose often tolerated, if taken in small doses divided through the day.

CAUSES, MECHANISM AND TREATMENTS OF SECONDARY LACTOSE INTOLERANCE

Diagnosis	Mechanism	Treatment
Viral Gastroenteritis	Transient (postenteritic malabsorption)	Short-term lactose restriction
Cow's milk enteropathy	Transient (villous damage)	Cow's milk protein-free diet (until tolerant to CMP)
Celiac disease	Transient (villous damage)	Life-long gluten and short-term lactose restriction

MISDIAGNOSIS OF LI AND CMPA

Persistent symptoms due to cow's milk

enteropathy often not recognized

HCP often unaware of clinical differences and confused about different infant formula types

Inappropriate use of lactose-free or lactose-reduced

formula in infants with CMPA

Transient nature of secondary lactose

intolerance often not recognised

LACTOSE RESTRICTION RARELY NEEDED IN INFANTS WITH CMPA

Type of CMPA	Need for lactose restriction
IgE-mediated CMPA/anaphylaxis	NO
Cow's milk protein-induced enteropathy	YES *
Cow's milk protein-induced enterocolitis syndrome (FPIES)	NO
Cow's milk protein-induced proctocolitis	NO
CMPA-associated gastro-esophageal reflux disease	NO
CMPA-associated constipation	NO
CMPA-associated eczema	NO

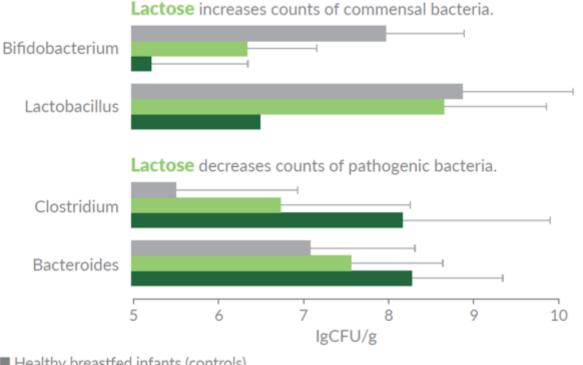
* until intestinal mucosal repair has occurred on CM-free diet

THE ROLE OF LACTOSE IN EHF

□ eHF is the first choice of formula in most infants with CMPA that are not breastfed

- A lactose-containing formula is well tolerated by most infants with CMPA
- An eHF without lactose is only warranted if an enteropathy with secondary lactose intolerance is present
- Lactose may cautiously be introduced after about 1-2 months, once symptoms have resolved and small intestinal lactase activity has been restored

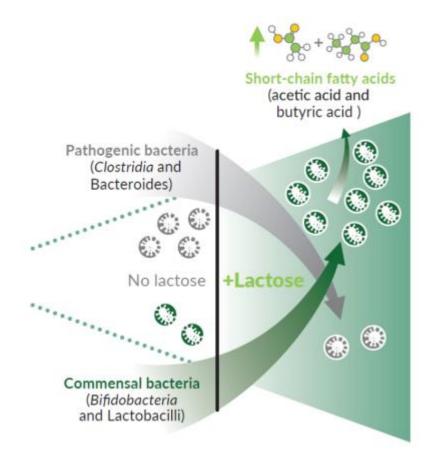
THE ROLE OF LACTOSE IN EHF- GUT MICROBIOTA


Lactose in eHF has several beneficial effects on the

- **gut** microbiota with significant:
 - increase in Lactobacilli & Bifidobacteria
 - decrease in Bacteroides & Clostridia
- fecal metabolome with increased concentrations of short chain fatty acids (SCFA)
 - acetic and butyric acid

 These prebiotic effects of lactose are thought to have positive effects on early immune development

Microbiota in fecal samples from infants with CMPA who received an eHF with or without lactose


- Significant increase in bifidobacteria and lactic acid bacteria (p<0.05) reaching counts found in healthy controls
- Significant increase in Bacteroides/clostridia (p<0.05)

- Healthy breastfed infants (controls)
- Infants with CMPA who received an eHF with lactose
- Infants with CMPA wo received an eHF without lactose

SCFA in fecal samples from infants with CMPA who received an eHF with or without lactose

- Significant increase in concentrations of total SCFA (p<0.03)
- Major differences found for acetic acid and butyric acid.
- Potential for lactose to promote SCFAproducing bacteria

THE ROLE OF LACTOSE IN EHF - CALCIUM ABSORPTION

Lactose in infant formula significantly increases the absorption of calcium

Calcium (n=18)	Lactose-containing formula	Lactose-free formula
Intake (mg/d)	507 ± 105	500 ± 91
Percentage absorption (%)	66.5 ± 11.9	56.2 ± 15.3^2
Total absorption (mg/d)	339 ± 88	279 ± 85^3

¹ mean ± SD

^{2, 3} Significantly different from lactose-containing formula (paired t test):

 $^{2}P = 0.002, \ ^{3}P = 0.006.$

THE ROLE OF LACTOSE IN EHF- TASTE

Most hypoallergenic formulas are lactose-free and many are poor tasting

The addition of lactose slightly increases the sweetness of EHF

- Improves the overall palatability

-Reduced risk of taste aversion and formula refusal,

particularly in older infants

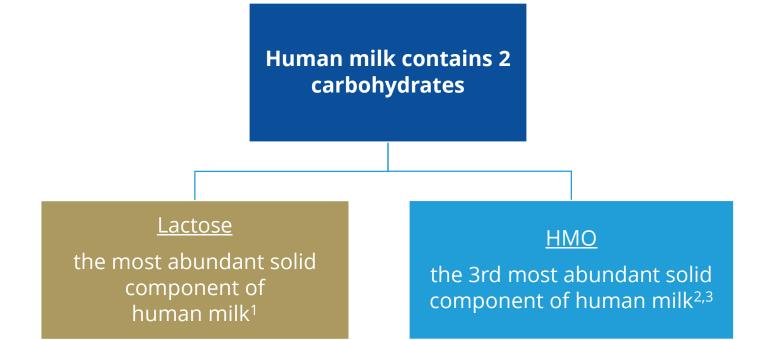
THE ROLE OF LACTOSE IN EHF - CLINICAL & IMMUNOLOGICAL BENEFITS

'Given the positive effects of lactose on fecal microbiome and metabolome, lactose-containing eHF may offer clinical and immunological benefits in the treatment of infants with CMPA'

HMO – a complex mix of carbohydrates and bioactive compounds "*nursing the microbiota*"⁴

A complex mix of (predominantly) non-digestible carbohydrates¹⁻³

- ~1% to 2% are absorbed
- ~98% to 99% metabolised by microbes or excreted

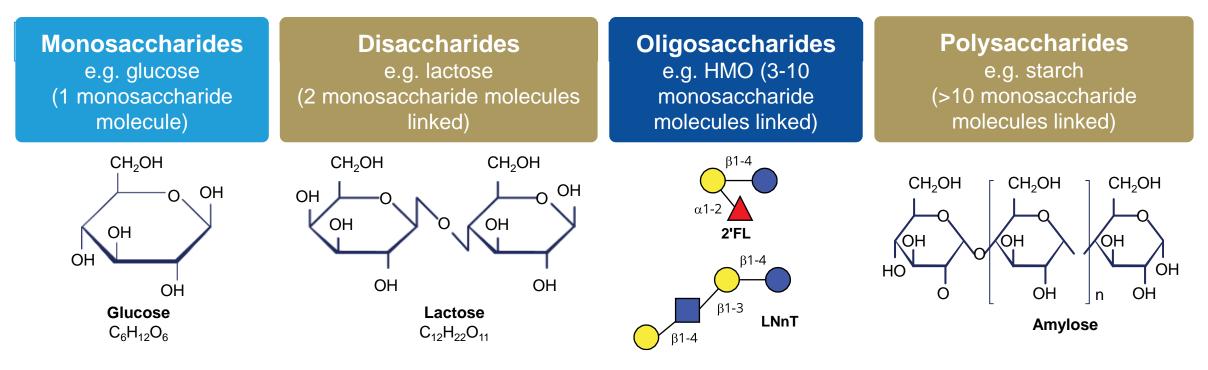

HMO act as bioactive compounds – present in high amounts in human milk⁴

HMO support the infant gut microbiota⁵

HMO, human milk oligosaccharide.

- 1. Ruhaak LR, et al. Anal Bioanal Chem. 2014.
- 2. Rudloff S, et al. Br J Nutr. 2012.
- 3. Rudloff S. & Kunz C. Adv Nutr. 2012.
- 4. Donovan S, Comstock S. Ann Nutr Metab. 2016.
- 5. Sela D, Mills D. Trends Microbiol. 2010.

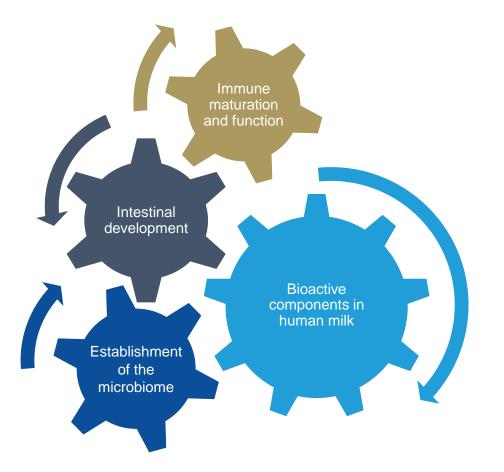
Carbohydrates in human milk


The amount and variety of HMO is unique to each individual mother³⁻⁵

HMO, human milk oligosaccharide.

- 1. Pacheco AR, et al. Annu Rev Anim Biosci. 2015.
- 2. Plaza-Díaz J, et al. Nutrients. 2018.
- 3. Ruhaak LR, et al. Anal Bioanal Chem. 2014.
- 4. Samuel TM, et al. Sci Rep. 2019.
- 5. Tonon KM, et al. Nutrients. 2019.

HMO – "Every baby needs a sugar mama"¹


Carbohydrates also called sugars/saccharides can be classified as:²

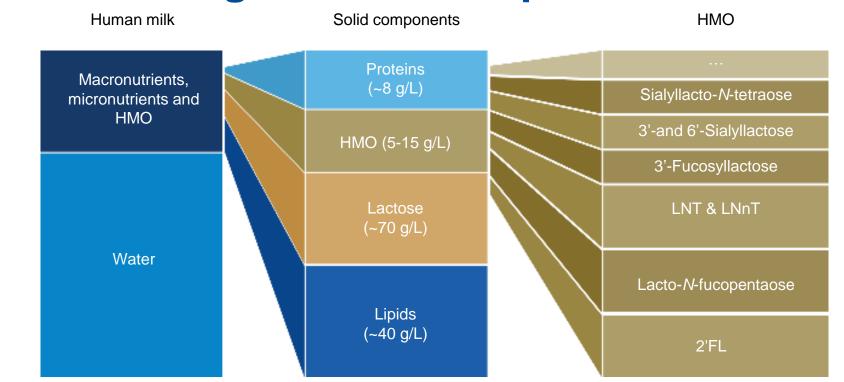
The building blocks of HMO are: Glucose + galactose (lactose) plus one or more of N-acetyglucosamine, fucose and N-acetylneuraminic acid (sialic acid)¹

HMO, human milk oligosaccharide.

HMO as bioactive compounds – impacting the overall health of the individual

Human milk contains a variety of factors and qualities that have a profound role to play in infant survival and health¹

Among the bioactive components in human milk that are modulators of these processes, oligosaccharides are a key component^{2,3}


HMO affect biological processes or substrates and have an impact on body function/condition - and ultimately health¹

HMO, human milk oligosaccharide.

1. Ballard O, Morrow A. Pediatr Clin North Am. 2013.

2. Donovan S. & Comstock S. Ann Nutr Metab. 2016

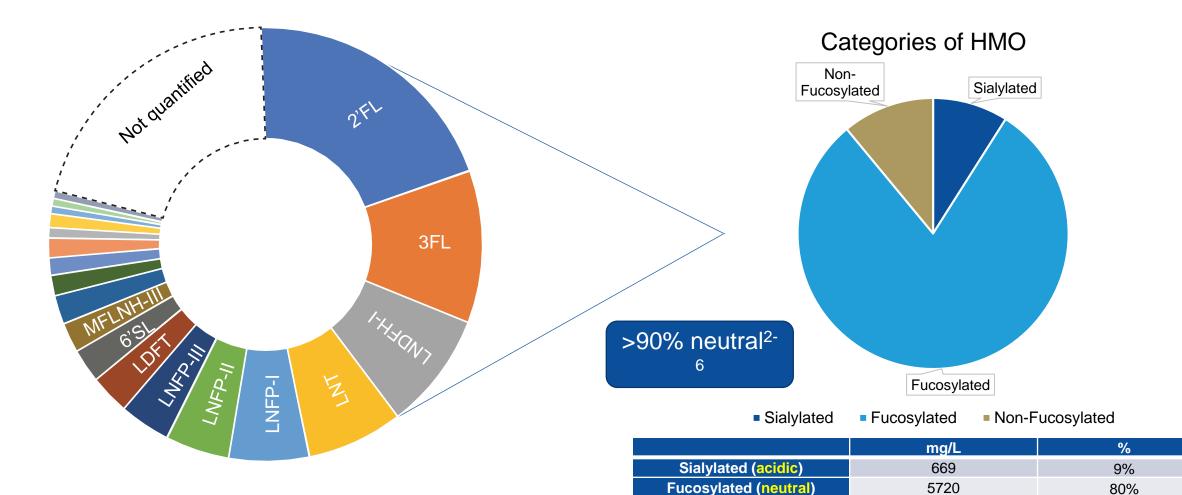
3. Pfeuffer M. & Schrezenmeir J. Br J Nutr. 2000.

HMO are the 3rd largest solid component in human milk

Adapted from Zivkovic, et al. PNAS. 2013.

The HMO fraction is quantitatively larger than that of protein (which is typically around 8 g/L)^{1,2} HMO can therefore be considered a key component of br<u>east milk¹</u>

2'FL, 2'fucosyllactose; HMO, human milk oligosaccharide; LNnT, lacto-N-(Neo)tetraose.


28

1. Zivkovic A, et al. PNAS. 2011.

2. Coppa GV, et al. Acta Paediatr. 1999.

3. Zivkovic A, et al. Funct Food Rev. 2013.

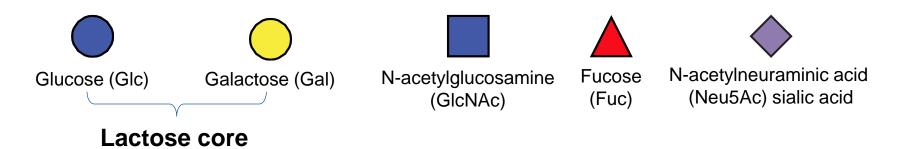
Around 200 HMO have been identified and classified¹

1. Ninonuevo MR, et al. J Agric Food Chem. 2006.

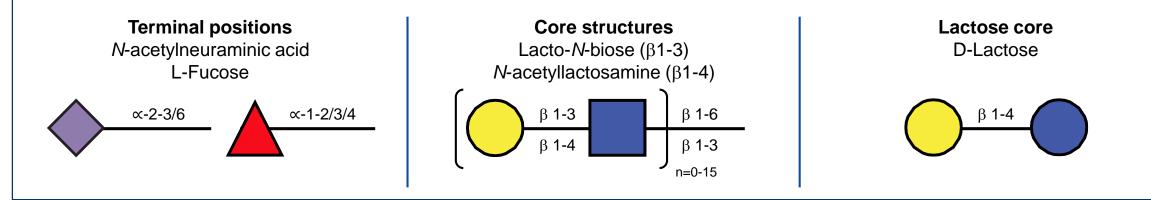
- 2. Austin S, et al. Nutrients. 2016.
- Austin S, et al. Nutrients. 2019. 3.
- Sprenger N, et al. PLoS ONE. 2017. 4.
- 5. Samuel TM, et al. Sci Rep. 2019. 6
 - Lefebvre et al. 2020 (manuscript submitted).

2'FL, 2'fucosyllactose; 3'FL, 3'fucosyllactose; 3'SL, 3'sialyllactose; 6'SL, 6'sialyllactose; HMO, human milk oligosaccharides; LDFT, lactodifucotetraose; LNDFH-I, lacto-N-difucohexaose; LNFP, lacto-N-fucopentaose; LNT, lacto-N-tetraose; LNnT, lacto-N-neotetraose; MFNLH-III, monofucosyllacto-N-hexaose-III.

801

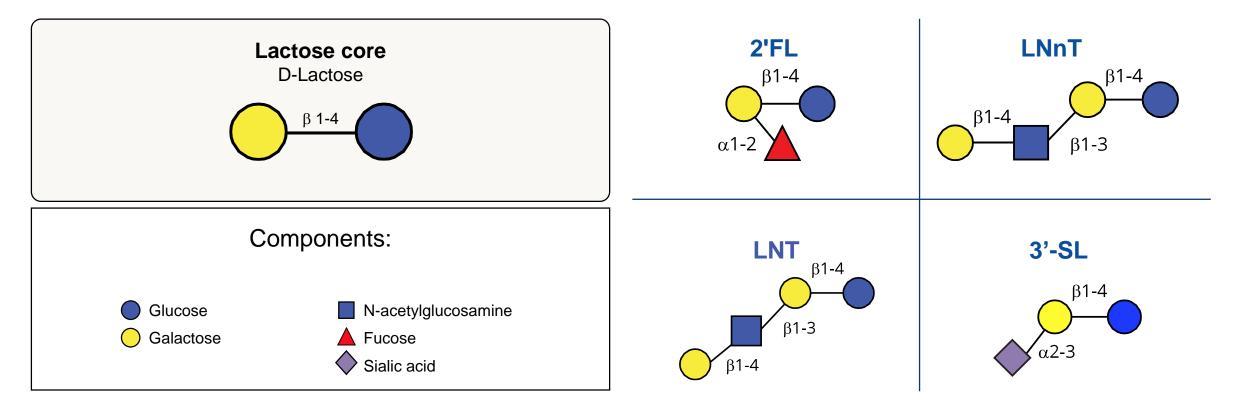

Non-Fucosylated (neutral)

29


11%

Structure of HMO

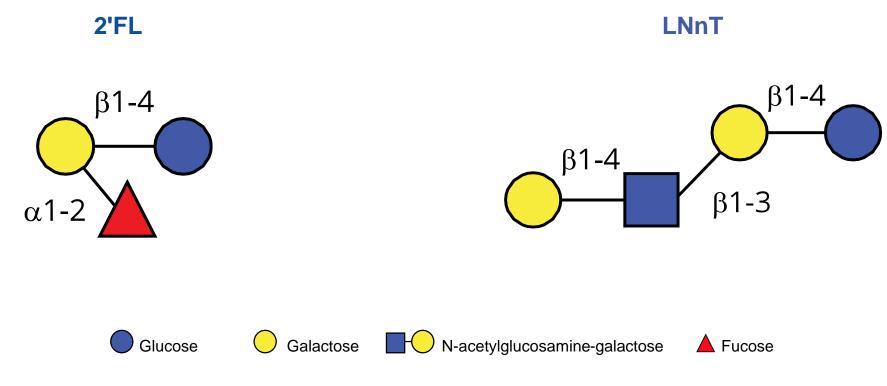
HMO are composed of 5 monosaccharide units¹



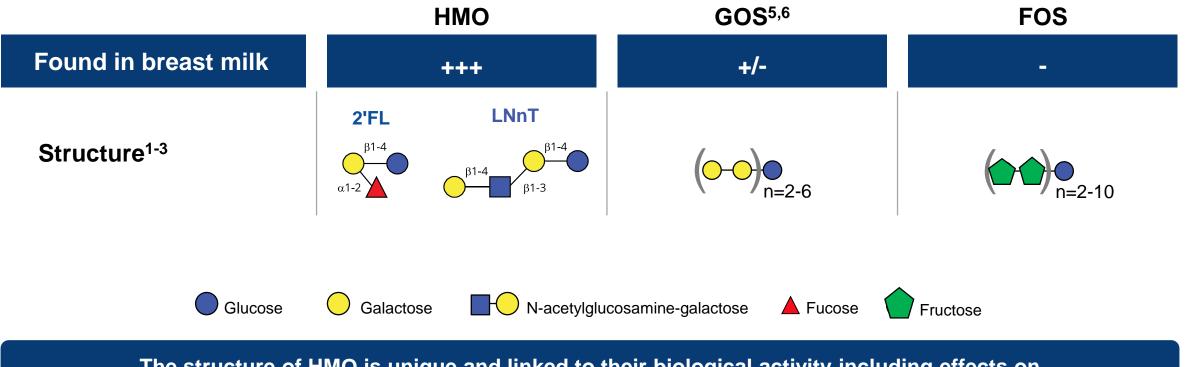
HMO, human milk oligosaccharide.

- 1. Zivkovic A, et al. Proc Natl Acad Sci. 2011.
- 2. Bode L. & Jantscher-Krenn E. Adv Nutr. 2012.
- 3. Jantscher-Krenn E. & Bode L. Minerva Pediatr. 2012.

HMO are structurally diverse with a lactose backbone


HMO commonly have a lactose backbone or core¹

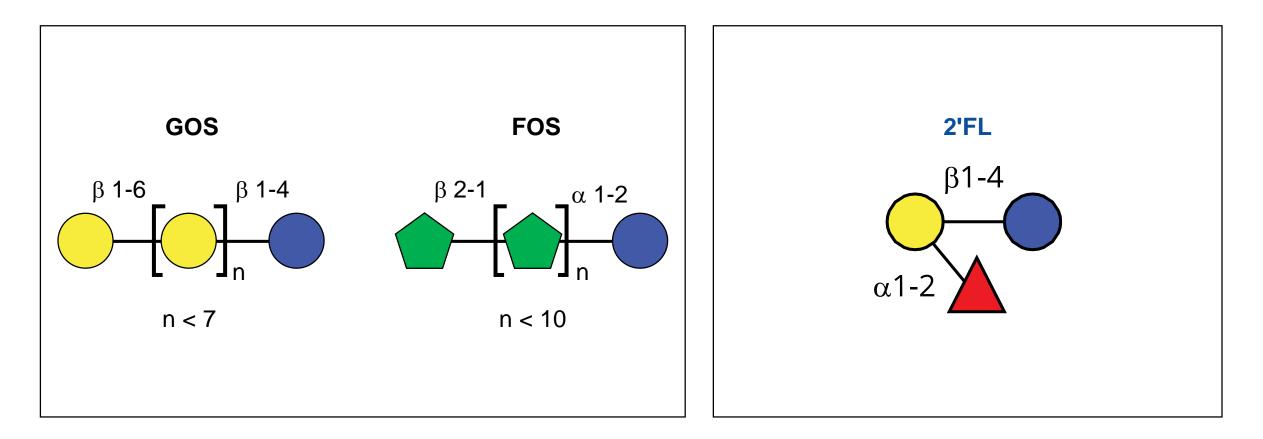
2'FL, 2'fucosyllactose; HMO, human milk oligosaccharide; LNnT, lacto-N-neotetraose; LNT, lacto-N-tetraose; 3'-SL, 3'-sialyllactose.


2'FL and LNnT are among the most abundant HMO in human milk

2'FL and LNnT are neutral oligosaccharides¹

2'FL, 2'fucosyllactose; HMO, human milk oligosaccharide; LNnT, lacto-N-neotetraose.

HMO have a unique structure different from GOS and FOS



The structure of HMO is unique and linked to their biological activity including effects on microbiota and immune cell populations⁴

2'FL, 2'fucosyllactose; FOS, fructo-oligosaccharide; GOS, galacto-oligosaccharide; HMO, human milk oligosaccharide; LNnT, lacto-N-(neo)tetraose.

- 1. Sela D. & Mills D. Trends Microbiol. 2010.
- 2. Zivkovic AM, et al. Proc Natl Acad Sci. 2011.
- 3. Bode L. & Jantscher-Krenn E. Adv Nutr. 2012.
- 4. Bode L, et al. Early Hum Dev. 2015.
- 5. Newburg DS et al. J Nutr. 2016
- 6. Austin S. et al. Nutrients. 2019

GOS and FOS are less complex structures than HMO^{1,2}

2'FL, 2'fucosyllactose; FOS, fructo-oligosaccharide; GOS, galacto-oligosaccharide; HMO, human milk oligosaccharide.

Several factors influence the composition, quantity and structure of HMO in human milk

Every mother synthesises and secretes a distinct HMO composition²

HMO, human milk oligosaccharide.

1. Miliku K, et al. CHILD study. Allergy. 2018.

2. Moossavi S, et al. Front Pediatr. 2018.

3. Bode L. Nestle Nutrition Workshop. 2017.

Stage of lactation influences quantity of HMO in human milk

Colostrum HMO range 20-25 g/L (2-2.5 g/100 mL)¹

Mature milk HMO range 5-20 g/L (0.5-2.0 g/100 mL)²

HMO, human milk oligosaccharide.

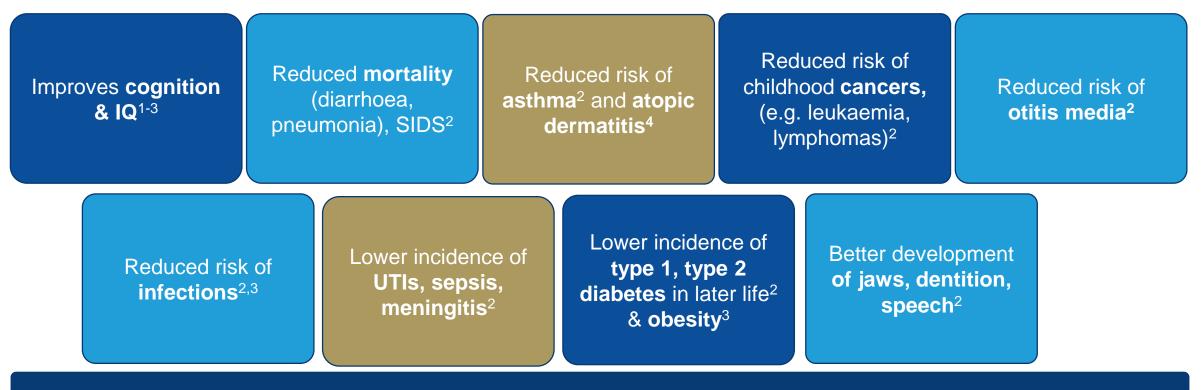
Coppa GV, et al. Acta Paediatr. 1999.
Bode L. *Glycobiology*. 2012.

Human milk – the gold standard in infant nutrition

Human milk is uniquely suited both in terms of nutrients and bioactive components required for optimum growth and development of the infant¹

• A tailor-made food designed to meet all the nutritional needs of the infant.

WHO and UNICEF guidelines recommend exclusive breastfeeding for the first 6 months of life^{2,3}


Other mammals produce oligosaccharides, for example, bovine, but have much lower levels and are much less complex⁴

Breastfeeding has numerous benefits including improved IQ and school attendance⁵

IQ, intelligence quotient; UNICEF, United Nations International Children's Emergency Fund; WHO, World Health Organization.

- 1. Ballard O. & Morrow A. Pediatr Clin North Am. 2013.
- 2. WHO (IYCF). 2009.
- 3. UNICEF (IYCF). 2011.
- 4. Bode L. Nestle Nutr. Workshop 2017.
- . Victora CG, et al Lancet. (The) Breastfeeding Series. 2016.

The numerous benefits of breastfeeding – "Babies are being flushed with HMO"³

Breastfeeding promotes a special kind of bonding between mother-infant dyad

GI, gastrointestinal; IQ, intelligence quotient; NEC, necrotizing enterocolitis; RTI, respiratory tract infection; SIDS, sudden infant death syndrome; UTI, urinary tract infection.

- 1. WHO (IYCF). 2009.
- 2. UNICEF (IYCF). 2011.
- B. Victora CG, et al Lancet. (The) Breastfeeding Series. 2016.
- 4. Bode L. EAPS Presentation. Paris. 2018.

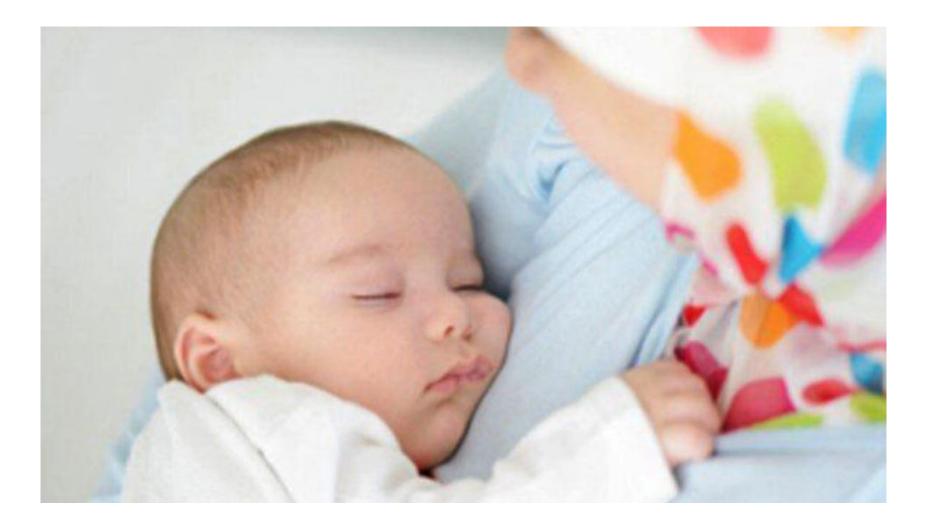
HMO are a mix of complex carbohydrates with bioactive features

~1% to 2% absorbed – 98% to 99% are non-digested

HMO are the 3rd largest solid component of human milk after lactose and fat

~ 200 different HMO have been identified to date – broadly classified as neutral and acidic

- Neutral HMO represent the largest component ~90%
- 2'FL and LNnT are neutral HMO


HMO are structurally diverse with a lactose backbone

• But more complex than other carbohydrates and more complex than GOS and FOS

Many factors influence the HMO composition

Human milk is the gold standard for human infants

THANK YOU

