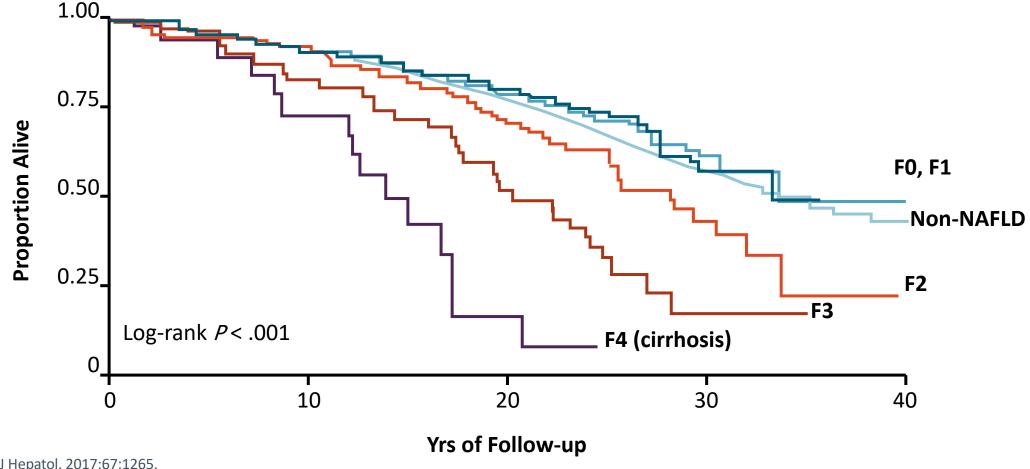
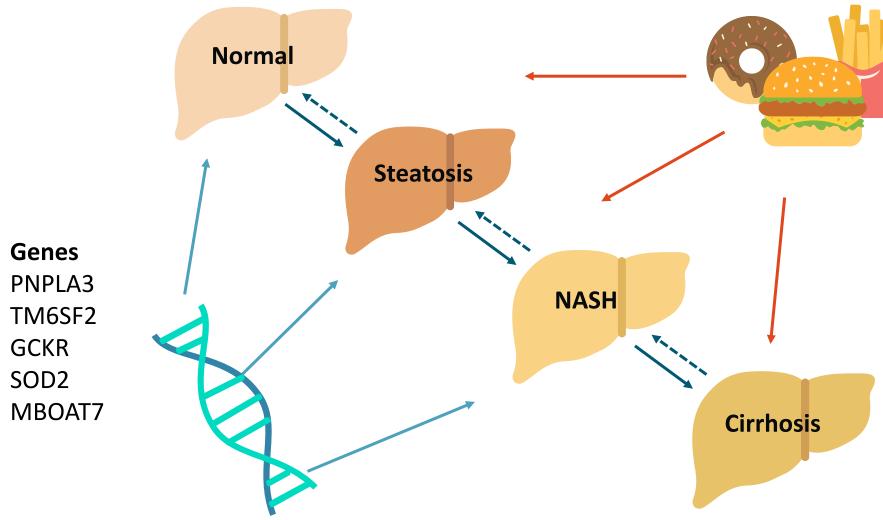

NASH: Management Approaches With Currently Available Treatments

Amir Ali Sohrabpour

Associate Professor of Medicine
Tehran University of Medical Sciences
Director, Iranian Hepatitis Network
Linktr.ee/aasohrabpour


The NAFLD Continuum


^{*}Based on analysis of NHANES data estimating 1.74% prevalence of NASH with advanced fibrosis^[2]

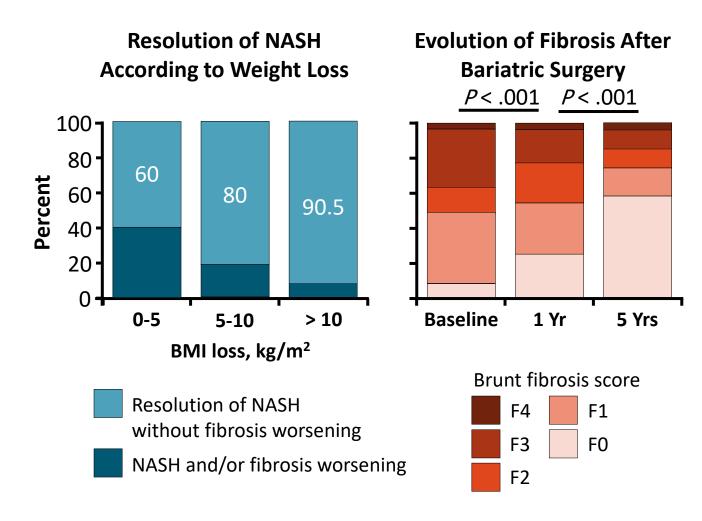
Liver Fibrosis Is a Risk for Adverse Outcomes

Retrospective survival analysis of 646 NAFLD patients and matched controls

NAFLD as a Complex Disease Trait: Genetic and Environmental Modifiers

Environment

Sedentary lifestyle Snacking, fast food Saturated fats Trans fats Processed red meat


Epigenetics

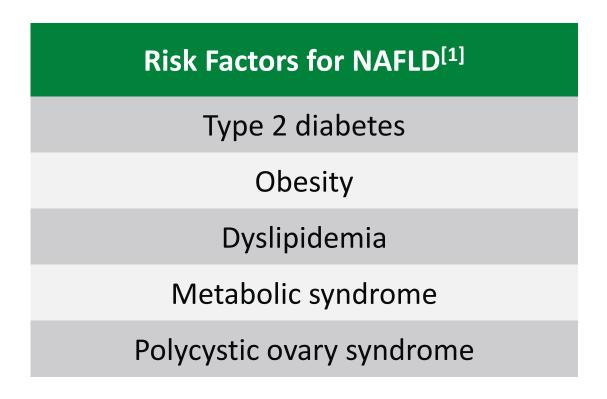
Gut microbiome

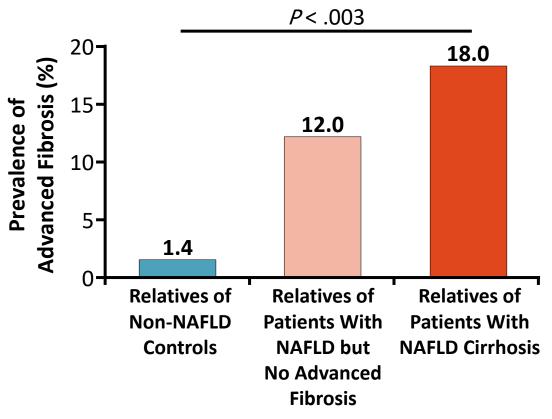
Cotter. Gastroenterology. 2020;158:1851. Krawczyk. Gastroenterology. 2020;158:1865.

Is NASH Reversible?

- French single-center study of bariatric surgery in severely obese patients with biopsy-confirmed NASH (N = 180)
- At 5 yrs post surgery, 64 of 94 patients (84%) had NASH resolution with no worsening of fibrosis
 - NASH improvement correlated with weight loss

Liver Enzymes: Inadequate in Assessing NAFLD/NASH

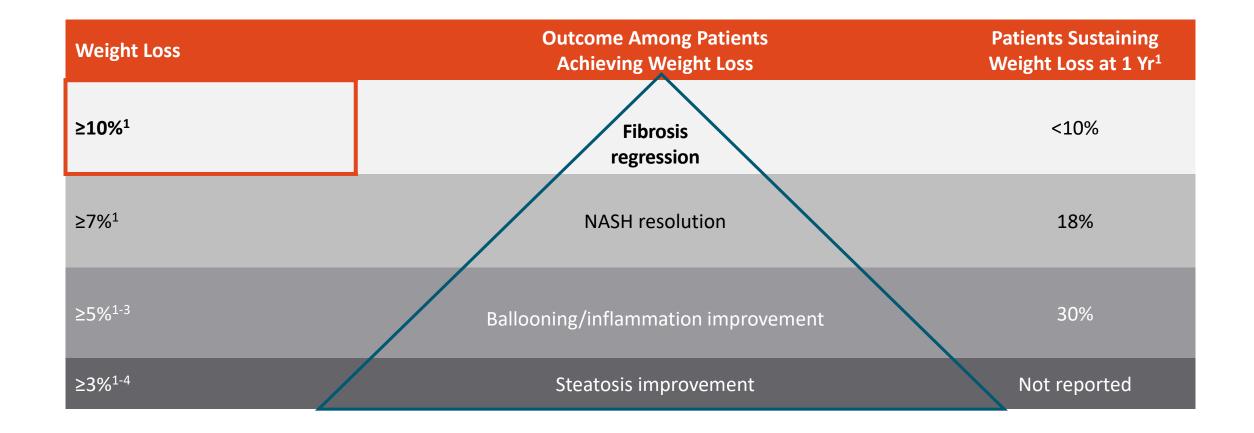

- ALT can be normal in > 50% of individuals with NASH, 80% of individuals with NAFLD^[1,2]
- In NAFLD, ALT is neither indicative nor predictive of NASH or fibrosis stage:
 - Normal ALT does not preclude NASH/progressive disease
 - Elevated ALT cannot predict NASH or fibrosis
 - ALT or AST not sensitive for NAFLD/NASH


Abnormal ALT may warrant workup for NAFLD, but is not sensitive to confirm, rule out, or characterize NAFLD

^{1.} Browning. Hepatology. 2004;40:1387. 2. Dyson. Frontline Gastroenterol. 2014;5:211.

^{3.} Mofrad. Hepatology. 2003;37:1286. 4. Younossi. Am J Gastroenterol. 2020;00:1.

Who Is at Risk for NASH and Advanced Hepatic Fibrosis?



 Risk of advanced fibrosis higher in first-degree relatives of patients with NAFLD cirrhosis^[2]

Lifestyle Guidelines in NASH

	AASLD 2018 ¹	EASL 2016 ²	APASL 2020 ³
Program	Lifestyle modification including	ng dietary change, weight loss, and	structured exercise intervention
	500-1000 kcal e	nergy deficit to induce a weight loss	of 500-1000 g/wk
Diet	 Prospective trials comparing macronutrient diets in NAFLD are limited 	Exclusion of NAFLD-promotin fructose)Mediterranean diet suggested	g components (processed food, added
Weight Loss	7% to %10% weight loss is	the target of lifestyle interventions	to improve NASH and fibrosis
Exercise	 Exercise alone may prevent/ reduce hepatic steatosis Effect on other aspects of liver histology unknown 	Both aerobic exercise and resTailor to patient prefere	istance training reduce liver fat nces
Bariatric Surgery	■ Reduces liver fa	at, improves histologic lesions of NA Individualize decision in cirrhos	

Sustained Weight Loss Through Lifestyle Modification

^{1.} Vilar-Gomez. Gastroenterology. 2015;149:367. 2. Promrat. Hepatology. 2010;51:121.

^{3.} Harrison. Hepatology. 2009;49:80. 4. Wong. J Hepatol. 2013;59:536.

Pharmacotherapy in NAFLD Reserved for Patients With <u>NASH and Fibrosis</u>

AASLD¹

 Pharmacologic treatments should generally be limited to those with biopsy-proven NASH and fibrosis

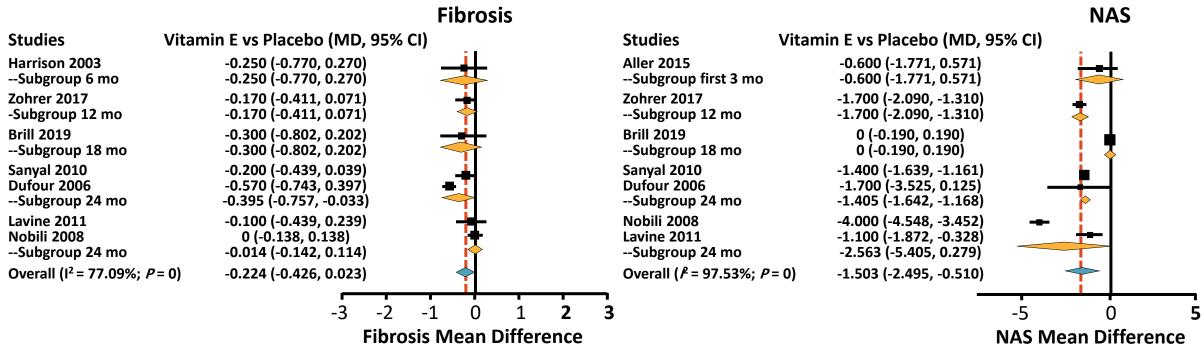
EASL-EASD-EASO²

- Pharmacotherapy should be reserved for patients with NASH, particularly if significant fibrosis.
- Patients with less severe
 disease, but at high risk of
 progression (diabetes, MetS,
 persistently increased ALT,
 high necroinflammation) could
 also be candidates

APASL³

Patients without steatohepatitis or fibrosis should receive counseling for a healthy diet and physical activity and no pharmacotherapy for their liver disease

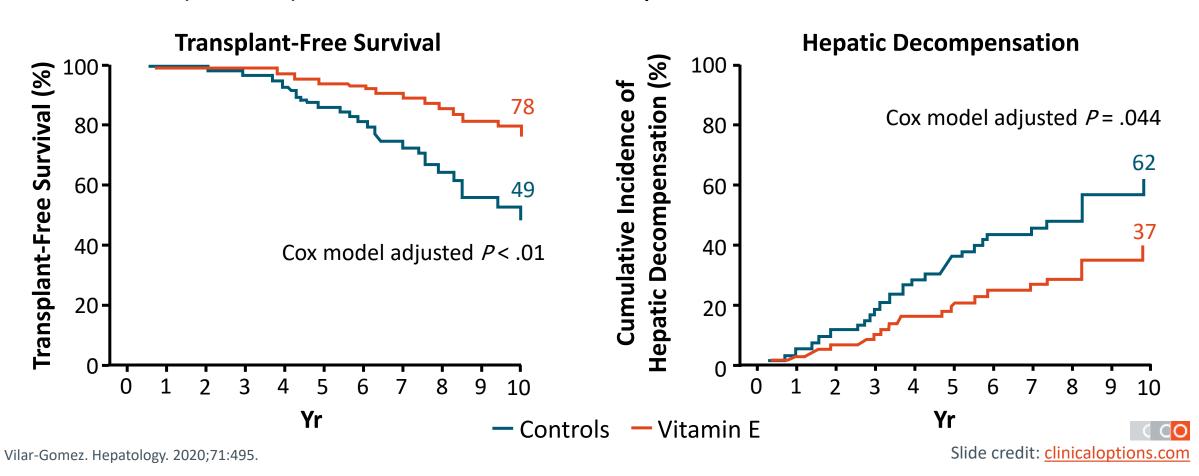
Pharmacotherapy in NAFLD and NASH (Off Label)


	AASLD 2018 ¹	EASL-EASD-EASO 2016 ²	APASL 2020 ³	
Vitamin E	Recommended in nondiabetic patients with biopsy-proven NASH (800 IU/day)	Recommended (800 IU/day)	Insufficient evidence, no firm recommendation	
Pioglitazone	Recommended in patients with and without T2D and biopsy-proven NASH	Recommended in patients v	with T2D and biopsy-proven NASH	
Metformin		Not recommended		
Statin		Can be used to treat dyslipidemia, not NASHNo higher risk for serious liver injury		
UDCA	Not reco	Not recommended		
Omega-3 Fatty Acids	Not a specificConsider to trea	Not mentioned		
Obeticholic Acid	Further data needed			
GLP-1 RAs	Further d	Improve fibrosis, weight		
SGLT2 Inhibitors	Not mo	Further data needed		

^{1.} Chalasani. Hepatology. 2018;67:328. 2. EASL, EASD, EASO. J Hepatol. 2016;64:1388. 3. Eslam. Hepatol Intern. 2020:14:889.

Vitamin E: Recent Evidence in NAFLD/NASH

Meta-analysis: Vitamin E Reduces NAS and Fibrosis in NAFLD

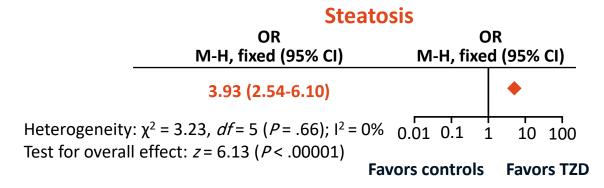

- Meta-analysis of N = 1317 patients with NAFLD in 15 RCTs
 - Study limitations: variations in definition of NAFLD; moderately small sample sizes

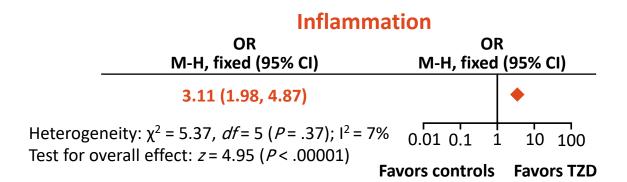
 Most promising patient for vitamin E treatment: an obese patient aged 15-50 yr, baseline AST >50 IU/L, daily intake of 400-800 IU vitamin E, liability to lose 5-10 kg

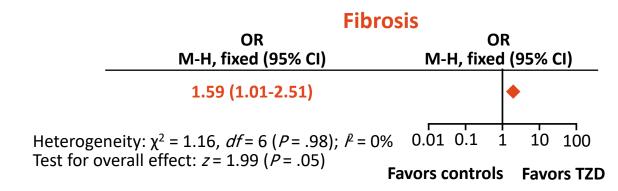
Vitamin E Improves Transplant-Free Survival and Hepatic Decompensation in NASH

 Single-center study of patients with biopsy-proven NASH and bridging fibrosis or cirrhosis (N = 236) followed for median 5.62 yr

AASLD Guidance: Vitamin E

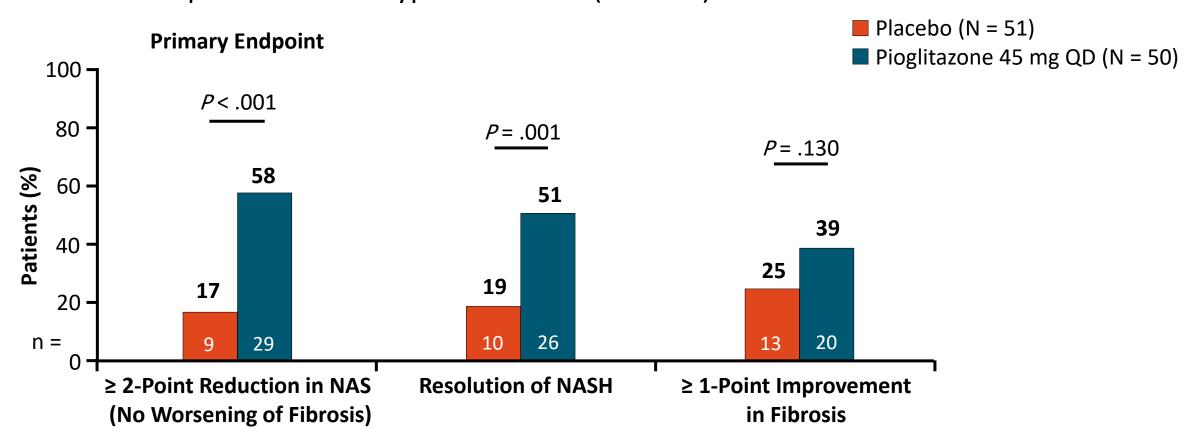

- May be considered to treat biopsyproven NASH in nondiabetic adults
- At 800 IU/day improves liver histology but not fibrosis
- Risks and benefits should be discussed with each patient
 - Long-term safety issues concerns linger (eg, impact on long-term mortality, prostate cancer)


- Not recommended to treat NASH in diabetic patients, NAFLD without a liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis
 - More data on safety and efficacy needed


Pioglitazone: Recent Evidence in NAFLD/NASH

Pioglitazone for NASH Without Diabetes

 Subset of n = 7 TZD studies in systemic review and metanalysis of randomized trials examining outcomes in NAFLD/NASH



TZD Pioglitazone in NASH and Prediabetes or Type 2 Diabetes: 18-Mo Outcomes

 Randomized, placebo-controlled, double-blind phase IV study of patients with NASH and prediabetes or type 2 diabetes (N = 101)^[1]

Safety and Tolerability

Vitamin E (800 IU/day)

- Possible all-cause mortality risk at > 800 IU/day,¹ not confirmed by a subsequent meta-analysis²
- Increased hemorrhagic stroke risk³
 - Also shows reduced ischemic stroke risk
- Increased prostate carcinoma risk (HR vs placebo: 1.17; 99% CI: 1.004-1.36; P=.008)⁴

Pioglitazone

- Edema, weight gain (~2-3 kg over 2-4 yr)⁵
- Risk of osteoporosis in women⁶
- Equivocal bladder cancer risk
 - Increased in some studies⁷
 - No association in most studies⁸

Use of these agents should be personalized for selected patients with histologically confirmed NASH after careful consideration of risk/benefit ratio

Statins

	Participants on statins			Participants not on statins				
	Baseline (n=227)	End of study (n=227)	Percentage change	pvalue	Baseline (n=210)	End of study (n=210)	Percentage change	p value
Total cholesterol (mmol/L)	6-36 (0-70)	4-16 (0-21)*	-35%	<0-0001	6-41 (0-75)	6-21 (0-83)	-3%	0-8
LDL cholesterol (mmol/L)	4-37 (0-47)	2-46 (0-16)*	-44%	<0-0001	4-45 (0-72)	4-24 (0-83)	-5%	0-8
HDL cholesterol (mmol/L)	0.96 (0.18)	1-03 (0-18)*	8%	0-02	0.98 (0.26)	0-96 (0-23)	3%	0.9
Triglycerides (mmol/L)	2.20 (0.63)	1-49 (0-26)*	-32%	<0-0001	2.13 (0.58)	1.98 (0.62)	-7%	0-8
Alanine aminotransferase (IU/L)	57 (8)	37 (6)*	-35%	<0.0001	56 (9)	63 (7)	12%	0.003
Aspartate aminotransferase (IU/L)	49 (7)	26 (4)*	-47%	<0.0001	49 (7)	55 (8)	12%	0.01
γ-glutamyl transpeptidase (IU/L)	70 (10)	38 (6)*	-46%	<0.0001	68 (10)	79 (12)	16%	0.001
EGFR (mL/min per 1·73 m²)	59 (17)	70 (10)*	19%	<0.0001	68 (19)	64 (18)	-6%	0-8
Cardiovascular events		22 (9-7%)	**	**	140	63 (30-0%)		
Cardiovascular events per 100 patient-years	*	3-2		**		10-0	*	#1

Data are mean (SD) or n (%) unless otherwise stated. EGFR-estimated glomerular filtration rate. ---not applicable. *p<0-05 versus end of study in participants with abnormal liver function tests who were not on statins.

Table 3: Changes in characteristics of GREACE participants with abnormal liver function tests

Have a smart phrase that states it is safe and beneficial for your patient with NAFLD/NASH/elevated LFTs to take a statin!

Statins Lower Risk of Portal Hypertension in Cirrhosis

- Systematic review and meta-analysis of statin use in patients with cirrhosis
 - 8 studies (7 RCTs, 1 cohort study; N = 3195); pooled relative risk and 95% CI calculated by random effects model
- Relative risk for primary outcome (improvement in portal hypertension) with statins vs control: 1.91 (95% CI: 1.04-3.52; l^2 = 63%)
 - Sub-analysis showed 1 mo of statin use may be sufficient vs 3 mo

Analysis	Statin		Control		Risk Ratio (95% CI)	<i>P</i> Value	
Analysis	Events*	n	Events*	n	RISK RALIO (95% CI)	P value	
Overall	67	148	42	153	1.91 (1.04-3.52)	.04	
1 mo statin use	35	82	17	83	2.01 (1.31-3.10)	.002	
3 mo statin use	32	66	25	70	3.76 (0.36-39.77)	.27	

^{*}Event: Decrease in HVPG >20% or <12 mm Hg.

Wan. BMJ Open. 2019;9:e030038.

AASLD Guidance: Use of Insulin Sensitizers to Treat NAFLD/NASH

Metformin

- Not recommended for treating NASH in adults
- Improves serum aminotransferases and IR, but does not significantly improve liver histology

GLP-1 RAs

It is premature to consider
 GLP-1 RAs to specifically treat liver
 disease in patients with NAFLD or
 NASH

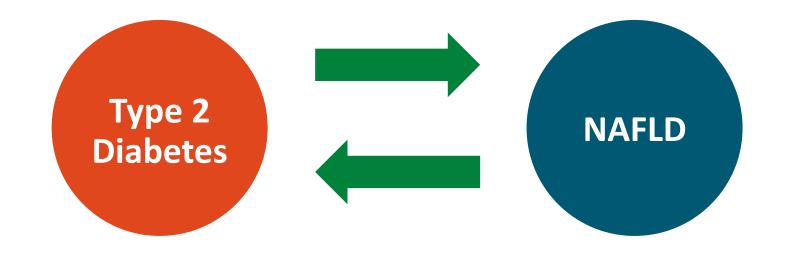
■ Pioglitazone ✓

- With biopsy-proven NASH:
 improves liver histology in
 patients with and without T2D
- Risks and benefits should be discussed with each patient
- Without biopsy-proven NASH: should not be used for NAFLD

Optimal Diabetes Therapies in NAFLD/NASH

An Integrated Approach to Obesity, Diabetes, and NAFLD

- Multidisciplinary: hepatologist, endocrinologist, nutritionist
 - Also psychologist, clinical pharmacist, physical therapist


- Cardiovascular risk reduction is essential
 - Manage dyslipidemia, hypertension, smoking cessation, antiplatelet therapy

- Screen and treat other comorbid conditions
 - Obstructive sleep apnea, degenerative joint disease

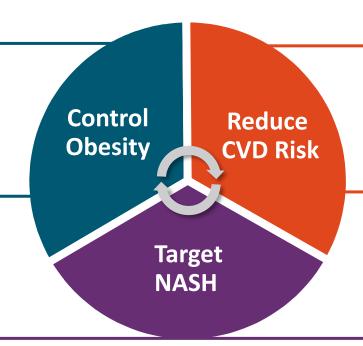
- Lifestyle interventions for all;
 add obesity pharmacotherapy and
 bariatric surgery when appropriate
- Individualize antihyperglycemic medications, targeting CV risk and body weight reduction when appropriate
- In patients with advanced liver disease, choose or dose drugs for diabetes or weight management appropriately

Type 2 Diabetes and Fatty Liver Disease: "Bidirectional Association"

"Traditionally a disease of hepatologists, nonalcoholic fatty liver disease (NAFLD) has recently become a major concern of a broad spectrum of healthcare providers"

"Endocrinologists and those caring for patients with type 2 diabetes mellitus (T2DM) are at center stage, as T2DM appears to worsen the course of NAFLD and the liver disease makes diabetes management more challenging"

Pharmacotherapy for T2D Patients With Comorbidities Associated With NAFLD/NASH


- In adults with diabetes and preexisting ASVCD or HF or CKD, ADA guidelines recommend^[1]:
 - GLP-1 RA with proven CV benefit
 - SGLT2 inhibitors with proven HF and CKD benefit
- Some GLP-1 RAs and SGLT2 inhibitors may have benefits in NAFLD

Approaches for Currently Available Treatments

Weight loss^[1-3]

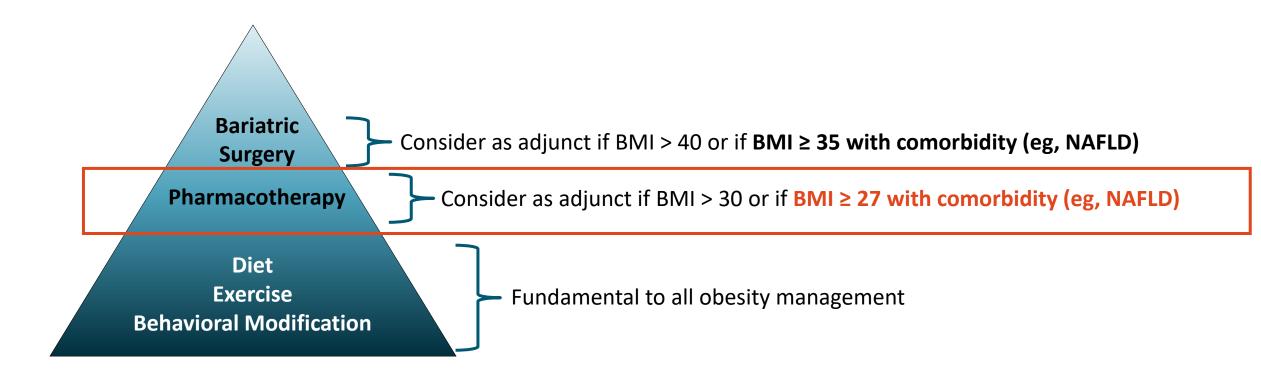
- Lifestyle (diet, physical activity)
- Weight loss medications
- Bariatric surgery

In patients with advanced liver disease, choose or dose drugs appropriately.

Treat T2D and CV risk factors^[4,5]

- Hyperglycemia (GLP-1 RA and/or SGLT-2i)
- Hypertension
- Dyslipidemia*

*NAFLD does not increase statin risk of drug-induced liver injury.^[8]


Liver-directed treatment

- Vitamin E (except in diabetes)^[6]
- Pioglitazone^[6,7]

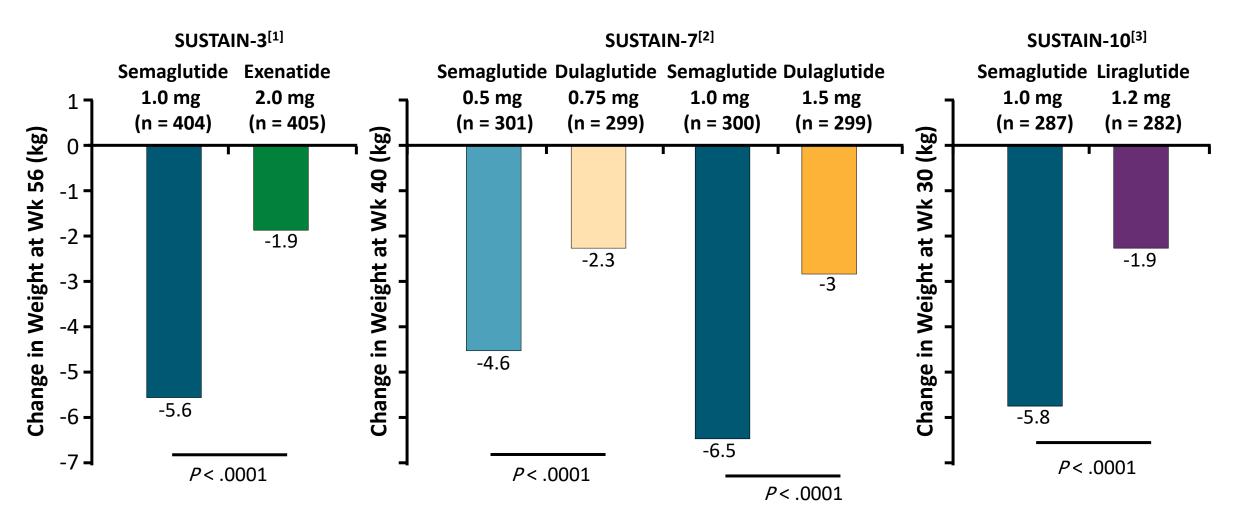
^{1.} Promrat. Hepatology. 2010;51:121. 2. Vilar-Gomez. Gastroenterology. 2015;149:367. 3. Lassailly. Gastroenterology. 2015;149:379.

^{4.} Musso. Hepatology. 2010;52:79. 5. Ratziu. J Hepatol. 2010;53:372. 6. Sanyal. NEJM. 2010;362:1675. 7. Cusi. Ann Intern Med. 2016;165:305. 8. Bril. J Clin Endocrinol Metab. 2017;102:2950.

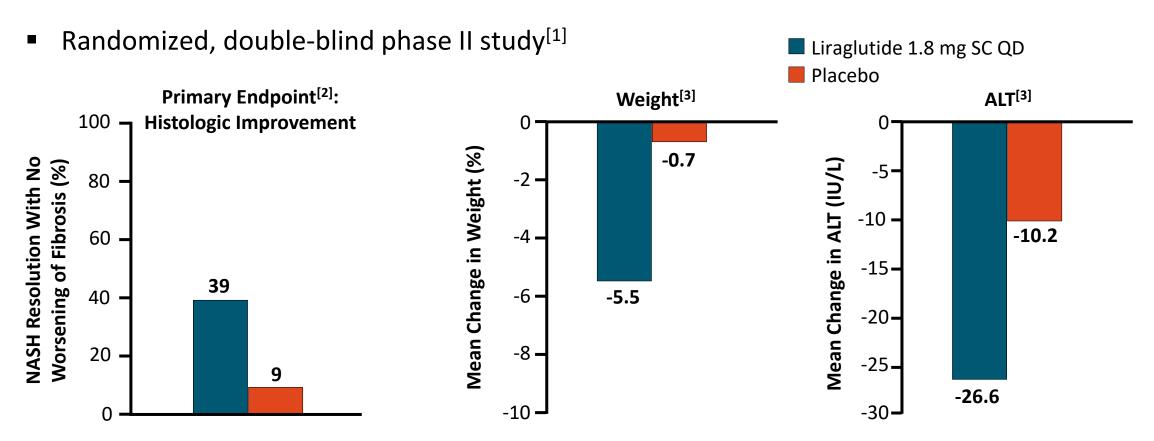
Weight Loss: Endocrine Society 2015 Obesity Guidelines

"... we suggest the use of approved weight loss medication (over no pharmacologic therapy)"

Weight Loss Through Lifestyle Modification in NAFLD

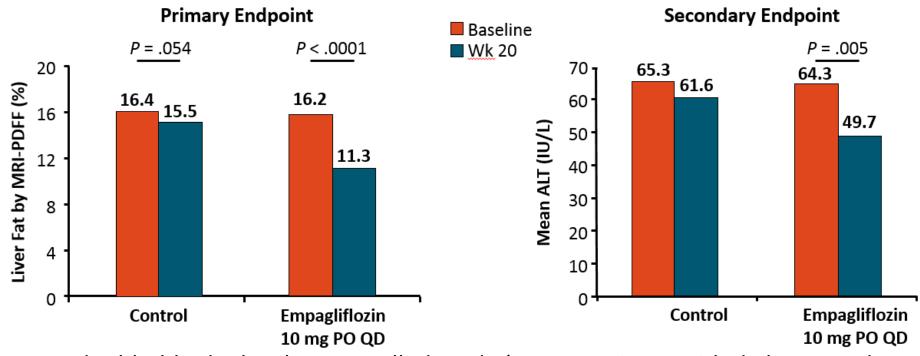

Weight Loss	Outcome Among Patients Achieving Weight Loss	Patients Sustaining Weight Loss at 1 Yr ^[1]
≥ 10% ^[1]	Fibrosis regression (45% of patients) ^[1]	< 10%
≥ 7% ^[1]	NASH resolution (64% to 90% of patients)*	18%
≥ 5% ^[1-3]	Ballooning/inflammation improvement (41% to 100% of patients)*	30%
≥ 3% ^[1-4]	Steatosis improvement (35% to 100% of patients)*	Not reported

^{*}Depending on degree of weight loss.


^{1.} Vilar-Gomez. Gastroenterology. 2015;149:367. 2. Promrat. Hepatology. 2010;51:121.

^{3.} Harrison. Hepatology. 2009;49:80. 4. Wong. J Hepatol. 2013;59:536.

GLP-1 RA Comparative Studies in T2D: Change in Body Weight


LEAN: 48-Wk Results of Liraglutide vs Placebo in Overweight Patients With NASH

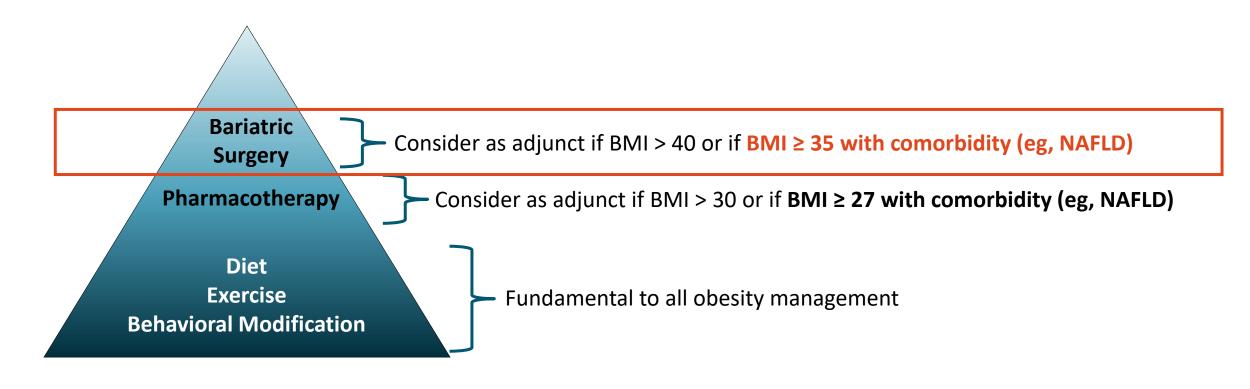
 Semaglutide also associated with ALT reduction and weight loss in nondiabetic adults with NASH and obesity^[3]


SGLT2 Inhibitors in NAFLD

• E-LIFT: randomized, open-label study of **empagliflozin** vs standard diabetes treatment in N = 42 patients with diabetes and NAFLD^[1]

In a separate double-blind, placebo-controlled study (n = 37 patients with diabetes and NAFLD), canagliflozin 300 mg PO QD associated with lower hepatic triglycerides, which correlated with weight loss^[2]

Coffee and NAFLD


The **risk of NAFLD** among those who drank coffee compared to those who did not was significantly lower with a pooled RR value of 0.77 (95% CI 0.60-0.98)

Liver fibrosis in those who drink coffee compared with those who did not drink in the NAFLD patients showed a lower risk: RR of 0.68 (95% CI 0.68-

Surgical Approaches to Weight Loss and Effect on Liver

Weight Loss: Endocrine Society 2015 Obesity Guidelines

"... we suggest the use of approved weight loss medication (over no pharmacologic therapy)"

Weight Loss: Long-term Results With Bariatric Surgery Procedures

Multicenter, retrospective cohort study of N = 2410 veterans with obesity

Would we expect similar results in NAFLD?

Bariatric Surgery Improves Liver Histology in Obese Patients

Prospective study in morbidly obese patients with biopsy-validated NASH,
 ≥ 1 comorbidity factor for > 5 yrs, no chronic liver disease (N = 109)^[1]

Outcome	Baseline	After 1 Yr
Mean BMI ± SD	49.3 ± 8.2	37.4 ± 7.0
Patients with NASH resolution, %	NA	85.0
Patients with fibrosis reduction, %	NA	33.8

 Meta-analysis of 32 cohort studies of bariatric surgery in obese patients (n = 3093 biopsies)^[2]

Characteristic	Outcome
Mean reduction in NAS, points	2.39
Patients with resolution of NAFLD components, %	
Steatosis	66
Inflammation	50
Ballooning	76
Fibrosis	40
Patients with new or worsening histologic NAFLD components, %	12

AASLD Guidance: Bariatric Surgery

- Can be considered in otherwise eligible obese individuals with NAFLD or NASH
 - Premature to consider bariatric surgery as an established option to treat NASH
- The type, safety, and efficacy of bariatric surgery are not established in obese individuals with cirrhosis from NAFLD
- In patients with compensated NASH or cryptogenic cirrhosis, bariatric surgery may be considered on a case-by-case basis by an experienced bariatric surgery program

Thank You

Amir Ali Sohrabpour

Associate Professor of Medicine
Tehran University of Medical Sciences
Director, Iranian Hepatitis Network
Linktr.ee/aasohrabpour

