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KEY POINTS

� The search for more accessible mesenchymal stem cells than those found in bone
marrow has propelled interest in dental tissues, which are rich sources of stem cells.
Human dental stem/progenitor cells (collectively termed dental stem cells [DSCs]) that
have been isolated and characterized include dental pulp stem cells, stem cells from
exfoliated deciduous teeth, stem cells from apical papilla, periodontal ligament stem
cells, and dental follicle progenitor cells.

� The common characteristics of these cell populations are the capacity for self-renewal
and the ability to differentiate into multiple lineages (multipotency). In vitro and animal
studies have shown that DSCs can differentiate into osseous, odontogenic, adipose,
endothelial, and neural-like tissues.

� In recent studies, third molar dental pulp somatic cells have been reprogrammed to
become induced pluripotent stem cells, and dental pulp pluripotentlike stem cells
have been isolated from the pulps of third molar teeth.
INTRODUCTION

The aim of regenerative medicine and tissue engineering is to replace or regenerate
human cells, tissue or organs, to restore or establish normal function.1 The 3 key
elements for tissue engineering are stem cells, scaffolds, and growth factors. Cell-
based therapies are integral components of regenerative medicine that exploit the
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inherent ability of stem cells to differentiate into specific cell types. The extension of
basic stem cell science into translational therapies is already well established with arti-
ficial skin therapies,2 whereas research is ongoing for cell-based therapies to target
other diseases, including diabetes,2 atherosclerosis,3 and neurodegenerative
diseases.4 The search for more accessible mesenchymal stem cells (MSCs) than
those found in bone marrow has propelled interest in dental tissues, which are rich
sources of stem cells. This article provides an overview of stems cells and then
focuses on dental stem cells (DSCs) and how recent developments have the potential
to greatly impact the way DSCs might be used in future regenerative medicine appli-
cations that include regenerative endodontic therapies.
STEM CELLS
General Characteristics

Stem cells are undifferentiated embryonic or adult cells that continuously divide. A
fundamental property of stem cells is self-renewal or the ability to go through
numerous cycles of cell division while maintaining the undifferentiated state (Box 1).
In addition, stem cells produce intermediate cell types (called progenitor or precursor
cells) that have the capacity to differentiate into different cell types and generate
complex tissues and organs.5 Differentiation occurs when a stem cell acquires the
features of a specialized cell (eg, odontoblast).
Stem cells can be either embryonic or adult (postnatal). Thomson and colleagues6

first reported human embryonic stem cell lines in 1998. Embryonic stem cells are iso-
lated from the blastocyst during embryonic development and give rise to the 3 primary
germ layers: ectoderm, endoderm, and mesoderm. These cells are totipotent or
pluripotent with an unlimited capacity to differentiate and can develop into each of
the more than 200 cell types of the adult body (Box 2).

Adult stem cells exist throughout the body in different tissues, including bone
marrow, brain, blood vessels, liver, skin, retina, pancreas, peripheral blood, muscle,
adipose tissue, and dental tissues. They are localized to specific niches where the
regulation of stem cell proliferation, survival, migration, fate, and aging occur.5,7

Whether cells undergo either prolonged self-renewal or differentiation depends on
intrinsic signals modulated by extrinsic factors in the stem cell niche.8 An adult
stem cell can divide and create another cell like itself, and also a cell more differenti-
ated than itself, but the capacity for differentiation into other cell types is limited. This
capability is described as being multipotent and is a distinguishing feature of adult
stem cells compared with the pluripotency of embryonic stem cells. Although early
research suggested that adult stem cells were limited in the types of tissues they
produced, it is increasingly apparent that adult stem cells have greater plasticity
than previously thought and can generate a tissue different to the site from which
they were originally isolated.9,10 An example with potential clinical applications is
the ability of dental pulp cells to generate heart tissue in rats.11
Box 1

Fundamental properties of stem cells

Undifferentiated cells Have not developed into a specialized cell type
Long-term self-renewal The ability to go through numerous cycles of cell division

while maintaining the undifferentiated state
Production of progenitor cells Capacity to differentiate into specialized cell types

(eg, odontoblast, osteoblast, adipocyte, fibroblast)



Box 2

Stem cell potency

Embryonic stem cells
from inner cell mass
of 3- to 5-day embryo
(blastocyst)

Totipotent Can give rise to all the cell types of the body,
including those cells making the
extraembryonic tissues (eg, placenta)

Unlimited capacity to divide
Embryonic stem cells
Induced pluripotent

stem cells

Pluripotent Can form derivatives of all the embryonic germ
layers (ectoderm, mesoderm, and endoderm)
from a single cell

Can give rise to all of the various cell types of the
body

Adult stem cells
(postnatal)

Multipotent Can give rise to more than one cell type of the
body

Induced pluripotent
stem cells

Pluripotent Derived from somatic cells
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MSCs

In 1963, hematopoietic stem cells giving rise to blood cells were identified in bone
marrow.12 Since then, it has been established that bone marrow is also the primary
source for multipotent MSCs.13 Bone marrow MSCs (BMMSCs) can differentiate
into osteogenic, chondrogenic, adipogenic, myogenic, and neurogenic lineages.
MSCs are found in many other tissues in the body, including umbilical cord blood,
adipose tissue, adult muscle, and dental tissues13; are capable of differentiating into
at least 3 cell lineages: osteogenic, chondrogenic, and adipogenic14; and can also
differentiate into other lineages, such as odontogenic, when grown in a defined micro-
environment in vitro.13,14

Definitive information on the location and distribution of MSCs is still being eluci-
dated. However, it has been shown that MSCs can be found around blood vessel walls
and perineurium as demonstrated by the immuno-colocalization of STRO-1/CD146
stem cell markers.15 These observations have led to the proposal that MSCs arise
from a perivascular stem cell niche15,16 that provides an environment allowing the cells
to retain their stemness.14,17 Crisan and colleagues15 demonstrated that human peri-
vascular cells from diverse and multiple human tissues give rise to multi-lineage
progenitor cells that exhibit the features of MSCs. Perivascular progenitor/stem cells
can also proliferate in response to odontoblast injury by cavity preparation under
ex vivo tooth culture conditions.18
Isolation, Identification, and Differentiation of MSCs

A fundamental approach to isolate MSCs in tissue samples involves the enzymatic
digestion of tissue followed by the growth of isolated cells (expansion) in medium
rich in growth factors.19,20 The isolation of more immature stem cells involves a multi-
step explant approach whereby pieces of tissue are first cultured until progenitor cells
grow after which enzymatic digestion and expansion in media proceed.7,21

The identification of MSCs uses a series of in vitro tests. Colony-forming assays are
used to confirm clonogenicity (the ability to generate identical stem cells with the
appropriate cell morphology), which is a consistent characteristic of MSCs. Pheno-
typic assays evaluate cell morphology or shape (eg, fibroblastic when flat and elon-
gated) and cell behavior (eg, secretory). The possession of one or several cell
surface markers found on cells in representative tissues is evaluated by flow cytome-
try, which sorts cells with specific surface protein, such as STRO-1, found on stem
cells that can differentiate into multiple mesenchymal lineages, including dental pulp
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cells (Fig. 1C, F, I).14,22 DSCs can also express specific proteins associated with endo-
thelium (CD106, CD146), perivascular tissues (a-smooth muscle actin, CD146, 3G5),
bone, dentin and cementum (bone morphogenic protein [BMP], alkaline phosphatase,
osteonectin, osteopontin, and bone sialoprotein), and fibroblasts (type I and III
collagen).23,24

In vitro functional assays test putative MSCs for multipotency by confirming that
differentiated cells demonstrate the appropriate phenotypic characteristics. Accord-
ingly, the in vitro confirmation of the multipotency of dental pulp stem cells (DPSCs)
can be demonstrated by the evidence of odontoblastlike differentiation (verified by
the deposition of mineralized matrix and positive staining for dentin sialophosphopro-
tein), adipogenic differentiation (by the accumulation of lipid vacuoles), chondrogenic
differentiation (by the production of collagen type II), and neurogenic differentiation (by
neuronal-cell morphologies and markers).25–31

In vivo functional assays are used to confirm that stem cells implanted into a new
environment (eg, immunodeficient mice) successfully integrate with adjacent cells,
survive, and function as differentiated cells.32 Several studies have demonstrated
the formation of new pulp and dentinlike tissues following the insertion of DSCs
Fig. 1. Microphotographs showing morphology of stem cells in culture: DPSCs (A), SHED
cells (D), and SCAP cells (G) (phase contrast, original magnification �200). Microphoto-
graphs for cytoskeleton labeled for actin-F (green fluorescent dye), nuclei with DAPI (blue
fluorescent dye), and STRO-1 positive cells (red fluorescent dye) for DPSCs (B, C), SHED cells
(E, F), and SCAP cells (H, I) ([B, E, H] immunofluorescence, original magnification �200; [C, F, I]
STRO-1 positive, original magnification �400). DPSC, dental pulp stem cells; SCAP, stem cells
from apical papilla; SHED, stem cells from human exfoliated deciduous teeth.
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seeded onto scaffolds in emptied human root canals or dentin disks embedded into
immunocompromised mice; the resulting dentinogenesis is accomplished by odonto-
blastlike cells derived from MSCs.16,23,27,28,31–34

Storage of Stem Cells

Adult stem cells can be obtained from individuals at any stage in life and, therefore, can
provide a source of cells for autologous transplants.35 Such procedures invariably
require stem cell storage, which is achieved by cryopreservation in liquid nitrogen
(�196�C). Stem cells can survive these low temperatures as long as they are dispersed
in cryprotectants.36,37 Human periodontal ligament stem cells (PDLSCs) have been
successfully recovered after cryopreservation for 6 months; although the number of
colonies was less than for fresh PDLSCs, the proliferation rate was similar.37 Similarly,
stemcells isolated fromhuman thirdmolar teeth and cryopreserved for at least 1month
retained STRO-1 marker expression and the potential to proliferate into neurogenic,
adipogenic, osteogenic/odontogenic, myogenic, and chondrogenic pathways in
inductive media.36 Cryopreservation of intact teeth provides another potential storage
method that can allow later extraction of stem cells demonstrating similar behavior as
stem cells extracted from fresh teeth.38,39

DSCS

A tooth develops as a result of carefully orchestrated interactions between the oral
epithelial ectodermal cells that form theenamel organ (for enamel formation) andcranial
neural crest–derived mesenchymal cells that form the dental papilla and dental follicle.
These MSCs give rise to the other components of the tooth: dentin, pulp, cementum,
and periodontal ligament. Beginning in 2000,23 several human dental stem/progenitor
cells have been isolated and characterized (Box 3). These cells include human DPSCs
from permanent teeth (see Fig. 1A–C),23 stem cells from exfoliated deciduous teeth
(SHED cells) (see Fig. 1D–F),25 stem cells from apical papilla (SCAP cells) (see
Fig. 1G–I),27 PDLSCs,40 and dental follicle precursor, or progenitor, cells (DFPCs).41

Although MSCs from different DSCs form distinct populations,24 among their common
characteristics are the capacity for self-renewal and the ability to differentiate into at
least 3 distinct lineages.14,24 The regeneration/revascularization of pulpal tissues
uses DSCs in partnership with growth factors, scaffolds, and vascular supply.32,42,43

DPSCs

DPSCs were first isolated from human permanent third molars in 2000.23 The cells
were characterized as clonogenic and highly proliferative. Colony formation frequency
was high and produced densely calcified, albeit sporadic, nodules.23 Dentin and
pulplike tissues were generated following the transplantation of DPSCs in
Box 3

Dental stem cells

DFPCs Dental follicle precursor cells
DPPSCs Dental pulp pluripotentlike stem cells
DPSCs Dental pulp stem cells
DSCs Dental stem cells
PDLSCs Periodontal ligament stem cells
PDLPs Periodontal ligament progenitor cells
SCAP cells Stem cells from apical papilla
SHED cells Stem cells from human exfoliated deciduous teeth
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hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds into immunodeficient
mice.23,24 A follow-up study confirmed that DPSCs fulfilled the criteria needed to be
stem cells: an ability to differentiate into adipocytes and neural cells and odontoblasts
(ie, multipotency) and self-renewal capabilities.31 Additional studies have confirmed
that DPSCs can also differentiate into osteoblast-, chondrocyte-, and myoblastlike
cells and demonstrate axon guidance.10,44–46

It is now recognized that DSCscanplay an important role in the balance of inflammation
and repair/dentinogenesis during invasive caries lesions or pulp exposures.47,48 Following
odontoblast damage after caries or trauma, markers of inflammation and regeneration
within thepulp tissuearedifferentially expressed,47,49,50withcrosstalkbetween the inflam-
matory and regenerative processesconsidered todetermine theoutcome.51 This notion is
supportedby invitroobservationsofDPSCsmigrating fromtheperivasculature toward the
dentin surface following injury to the dentinmatrix and differentiating into functional odon-
toblasts in response to EphB/ephrin signaling.52,53 DPSCs have also been shown to
express the bacterial recognition toll-like receptors, TLR4 and TLR2, and vascular endo-
thelial growth factor in response to lipopolysaccharide, a product of gram-negative
bacteria.20,48,54 When compared with normal pulps, DPSCs in inflamed pulp tissues
have reduced dentinogenesis activity,55 and an in vitro investigation has shown reduced
dentinogenic potential of DPSCs exposed to a high bacterial load that can be recovered
after the inhibition of the bacterial recognition toll-like receptor TLR2.48 Taken together,
these studies support the existence of interactions between DSCs and immune cells in
pulps affected by dental caries,47 a better understanding of which has significant implica-
tions for the future management of teeth affected by dental caries.
In an effort to determine the fate of DPSCs exposed to root canal irrigants used in

regenerative endodontic therapy procedures, dentin disks were preconditioned with
different irrigants (5.25% sodium hypochlorite [NaOCl] or 17% ethylenediaminetetra-
acetic acid [EDTA]), seeded with DPSCs, and implanted subcutaneously into immuno-
deficient mice.56 After 6 weeks, the differentiation of DPSCs into odontoblastlike cells
was facilitated by the use of EDTA. In contrast, the use of NaOCl resulted in resorption
lacunae at the cell-dentin interface.

SHED Cells

SHED cells are highly proliferative stem cells isolated from exfoliated deciduous teeth
capable of differentiating into a variety of cell types, including osteoblasts, neural cells,
adipocytes, and odontoblasts, and inducing dentin and bone formation.25 Like
DPSCs, SHED cells can generate dentin-pulplike tissues with distinct odontoblastlike
cells lining the mineralized dentin-matrix generated in HA/TCP scaffolds implanted in
immunodeficient mice.24 However, SHED cells have a higher proliferation rate than
DPSCs and BMMSCs, suggesting that they represent a more immature population
of multipotent stem cells.25,33,57 SHED cells have shown different gene expression
profiles from DPSCs and BMMSCs; genes related to cell proliferation and extracellular
matrix formation, such as transforming growth factor (TGF)-b, fibroblast growth factor
(FGF)2, TGF-b2, collagen (Col) I, and Col III, are more highly expressed in SHED cells
compared with DPSCs.57

In tissue engineering studies, odontoblastic and endothelial differentiation occurred
when SHED cells were seeded in tooth slices/scaffold and implanted subcutaneously
into immunodeficient mice.33,34 The resultant tissues closely resembled those of human
dental pulp, and tubular dentin mediated by dentin-derived BMP-2 protein was
secreted.33,58 These findings, together with those of other studies, suggest that SHED
cells from exfoliated deciduous teeth may be an excellent resource for stem cell thera-
pies, including autologous stem cell transplantation and tissue engineering.7,25
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Regenerative endodontic therapy procedures should avoid compromising the
attachment of stem cells to dentin. An in vitro study showed that the root canal irri-
gants 6% NaOCl and 2% chlorhexidine (CHX) were cytotoxic to SHED cells. In addi-
tion, the attachment of SHED cells to root canal dentin pretreated with NaOCl or CHX
was reduced compared with negative controls (saline pretreatment).59

SCAP Cells

SCAP cells are found in the apical papilla located at the apices of developing teeth at
the junction of the apical papilla and dental pulp.27,60,61 The apical papilla is essential
for root development. SCAPcellswere first isolated in human root apical papilla collected
from extracted human thirdmolars.27 The cells are clonogenic and can undergo odonto-
blastic/osteogenic, adipogenic, or neurogenic differentiation. Compared with DPSCs,
SCAP cells show higher proliferation rates and greater expression of CD24, which is
lost as SCAP cells differentiate and increase alkaline phosphate expression.27,60,62

SCAP cells seeded onto synthetic scaffolds consisting of poly-D,L-lactide/glycolide
inserted into tooth fragments, and transplanted into immunodeficient mice, induced
a pulplike tissue with well-established vascularity, and a continuous layer of dentinlike
tissue was deposited onto the canal dentinal wall.32 In a minipig, a bio-root was
created by using autologous human SCAP cells seeded in an HA/TCP root-shaped
carrier coated with Gelfoam (Pharmacia Canada Inc., Ontario, Canada) carrying
PDLSCs that were implanted in the alveolar socket of a recent extracted anterior
tooth.27 After 4 months, the resulting bio-root was capable of supporting a porcelain
crown and participating in normal tooth function.27

Root canal irrigants used in regenerative endodontic therapy procedures should
ideally support cell survival, or at least not compromise survival. An in vitro study
showed that 17% EDTA used alone supported SCAP cell survival better (89% survival)
than when used with either 6% NaOCl (74% survival) or 2% CHX (0% survival).63

PDLSCs

McCulloch64 reported the presence of progenitor/stem cells in the periodontal liga-
ment of mice in 1985. Subsequently, the isolation and identification of multipotent
MSCs in human periodontal ligaments were first reported in 2004.40 Seo and
colleagues40 demonstrated the presence of clonogenic stem cells in enzymatically
digested PDL and further showed that human PDLSCs transplanted into immunode-
ficient rodents generated a cementum/PDL-like structure that contributed to peri-
odontal tissue repair. Later work showed that PDLSCs differentiation was promoted
by Hertwig’s epithelial root sheath cells in vitro.65

PDLSCs have the capability to differentiate into cementoblastlike cells, adipocytes,
and fibroblasts that secrete collagen type I.66 As with BMMSCs, PDLSCs can undergo
osteogenic, adipogenic, and chondrogenic differentiation.67 PDLSCs have also been
shown to differentiate into neuronal precursors.68 A recent retrospective pilot study
showed evidence of the therapeutic potential of autologous periodontal ligament
progenitor cells obtained from third molar teeth implanted on bone grafting material
into intrabony defects in 2 patients.69 After 32 to 70 months, a marked improvement
was found in all sites. The progenitor cells behaved like PDLSCs, although they did
not express the same markers.69

DFPCs

The dental follicle forms at the cap stage by ectomesenchymal progenitor cells. It is
a loose vascular connective tissue that contains the developing tooth germ, and
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progenitors for periodontal ligament cells, cementoblasts, and osteoblasts. DFPCs
were first isolated from the dental follicle of human third molars.41

Because DFPCs come from developing tissue, it is considered that they might
exhibit a greater plasticity than other DSCs.70 Indeed, different cloned DFPC lines
have demonstrated great heterogeneity.71 In addition, after transplantation in immu-
nodeficient rodents, DFPCs differentiated into cementoblastlike72,73 and osteogenic-
like74 cells, and surface markers compatible with those of fibroblasts were identified in
human dental follicle tissues, suggesting the presence of immature PDL fibroblasts.75

DFPCs were able to differentiate into odontoblasts in vitro, and four weeks after
combining rat DFPCs with treated dentin matrix the root-like tissues stained positive
for markers of dental pulp.26,76 Both DFPCs and SHED cells can differentiate into
neural cells; however, these are differentially expressed when the cells are grown
under the same culture conditions.77

Induced Pluripotent Stem Cells and Dental Pulp Pluripotentlike Stem Cells

In breakthrough studies in 2006 and 2007, investigators described methods to repro-
gram somatic cells from mice,78 and subsequently humans,79,80 by the insertion of 4
genes (OCT3/4, SOX2, KLF4, and MYC) that reprogrammed the somatic cells and
returned them to an embryolike state. The resultant induced pluripotent stem (iPS)
cells have embryonic stem cell characteristics: they are capable of generating cells
from each of the 3 embryonic germ layers and can propagate in culture indefinitely.
The pluripotency of human stem cells can be tested in vitro by the aggregation and
generation of embryoid bodies from cultured cells81 and in vivo by teratoma formation
after cells are injected subcutaneously into immunodeficient mice.82 The use of MYC
is now avoided because it might induce malignant tumor formation and, therefore,
would be contraindicated for clinical application.83

Recent reports have described successful attempts to develop pluripotent stem cells
from pulps recovered from deciduous teeth7 and from third molar pulps.84,85 Indeed,
deriving iPS cells from deciduous teeth DPSCs was reported to be easier and more effi-
cient compared with human fibroblasts.7 Oda and colleagues84 reported successfully
reprogramming mesenchymal stromal cells derived from the pulps of young human
thirdmolars (obtained from patients aged 10, 13, and 16 years) by retroviral transduction
of the transcription factors OCT3/4, SOX2, and KLF4. The resultant cells had high iPS
clonal efficiency suggesting a potential role for dental pulp stromal cells in regenerative
medicine. A recent report describes the isolation of dental pulp pluripotentlike stem cells
(DPPSCs) from the pulps of human third molar pulp tissue obtained from 20 patients of
different genders and ages ranging from 14 to 60 years.85 When the cells were injected
into nude mice, teratomalike structures developed that contained tissues derived from
all 3 embryonic germ layers. Significantly, the investigators noted that even in older
patients, there was always a population of DPPSCs present.85

Although iPS cells are not truly equal to embryonic stem cells,86 and may even have
a memory of the somatic tissue from which they were derived,87 they have generated
great interest for their many potential personalized regenerative therapeutic applica-
tions.88 For example, disease-causing mutations could be repaired by reprogram-
ming. Another potential application is to use iPS cells derived from patients with
diseases for drug development and in vitro disease modeling.89,90
SUMMARY

The ready availability of DSCs makes them a viable source of adult MSCs for regener-
ative medicine applications. Human dental stem/progenitor cells that have been
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isolated and characterized include DPSCs, SHED cells, SCAP cells, PDLSCs, and
DFPCs. Although much work is required for the translation of data from in vitro and
animal studies to viable clinical applications, there are exciting possibilities for the
use of DPSCs in tissue engineering and regenerative medicine applications within the
root canal, the oral cavity, and in other parts of the body. Finally, the relative ease
with which DSCs can be obtained, coupled with interest in stem cell banking,91,92 will
likely drive research that further elucidates their characteristics and potential
applications.
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