DIABETIC CARDIOMYOPATHY

S. Taghavi

Professor of Cardiology

Heart Failure and Heart Transplantation Fellowship

RHC

DEFINITION

- Abnormal cardiac structure and function in the absence of other cardiac risk factors
- Prevalence
 - T1DM: 14.5%
 - T2DM: 35.0%
- The risks of diabetic cardiomyopathy and HF are correlated with the level of glycaemic control
 - each 1% increase in glycated hemoglobin
 - 30% increased risk in T1DM
 - 8% increased risk in T2DM

CARDIOMYOPATHY IN T1DM AND T2DM

- Reduced insulin-mediated mitochondrial glucose oxidation
- insulin resistance
 - increased free fatty acid uptake by cardiomyocytes via the fatty acid translocase CD₃6
 - impairs mitochondrial fatty acid β-oxidation
 - greater mitochondrial dysfunction and accumulation of toxic lipid metabolites in the heart

CARDIOMYOPATHY IN T1DM AND T2DM

- T2DM
 - HFpEF
 - increased myocardial collagen deposition
 - concentric left ventricular (LV) remodelling and hypertrophy
 - coronary microvascular inflammation
 - paracrine effects on cardiomyocytes
 - symptoms of HFrEF occur later

- T1DM
 - HFrEF
 - cardiomyocyte loss
 - LV remodelling
 - increased myocardial collagen deposition
 - Arrhythmias
 - mitochondrial dysfunction
 - abnormal Ca2+ transport
 - autonomic neuropathy

PATHOPHYSIOLOGY OF DIABETIC CARDIOMYOPATHY LACK OF INSULIN OR INSULIN RESISTANCE

- metabolic shift in cardiomyocytes
- fatty acid intake and β-oxidation
- intracellular lipid accumulation and lipotoxicity
- intracellular fatty acid concentration
- mitochondrial dysfunction
 - increased generation of reactive oxygen species (ROS) and reactive nitrogen species
 - cardiomyocyte death
 - cardiac hypertrophy and inflammation
 - progressive profibrotic response that induces extracellular matrix (ECM) remodeling and fibrosis

- phosphorylation of titin
 - cardiomyocyte hypertrophy and myocardial
 - cardiomyocyte passive tension
- disrupted Ca2+ cycling and increased fibrotic scarring
 - contractile dysfunction and arrhythmia

CARDIAC REMODELLING AND DYSFUNCTION

- AGEs generated by the exposure of proteins and lipids to high glucose levels
 - impair ECM degradation by MMPs
 - increase cardiac stiffness
 - early diastolic dysfunction
 - promote the differentiation of fibroblasts into myofibroblasts
 - proliferate and induce ECM
 - secreting profibrotic cytokines and matrix proteins

- TGFβ, TNF, angiotensin II and various interleukins
 - impaired cardiac contractility and late systolic dysfunction
 - deposition of structural ECM proteins and matricellular macromolecules
- Reduced NO signalling
 - soluble guanylate cyclase (sGC) activity and cyclic GMP (cGMP
 - abolishes the protective effects of protein kinase G (PKG)
 - cardiomyocyte hypertrophy and stiffness
- Significantly higher level of type III collagen

CARDIAC INFLAMMATION

- inflammatory cells
 - cytokines, chemokines and exosomes
 - cardiomyocyte hypertrophy and ECM remodeling
 - accumulation and infiltration of pro-inflammatory macrophages and lymphocytes
 - TNF, IL-6, IL-1β, interferon-γ and TGFβ
 - induce or exacerbate cardiac injury
 - adverse remodeling

POTENTIAL THERAPEUTIC STRATEGIES

CARDIAC REMODELING AND DYSFUNCTION PRECLINICAL STUDIES

- Anti-fibrotic pathways to prevent adverse cardiac remodeling in animal models of diabetes
 - collagen production stimulated by TGFβ signaling: cinnamoyl anthranilate
 - Strategies to restore cGMP
 - PDE5 inhibitors, such as sildenafil, vardenafil, and tadalafil

- SGLT2 inhibitor empagliflozin
 - reduced cardiac hypertrophy, fibrosis, oxidative stress and apoptosis
 - rescuing the diabetes-induced suppression of the sGC–cGMP–PKG pathway
- Relaxin
 - antifibrotic hormone
 - preventing collagen production
 - downregulating fibroblast-tomyofibroblast transition and by stimulating MMP production

CARDIAC REMODELING AND DYSFUNCTION

Clinical studies

Elisa Giannetta. Circulation. Chronic Inhibition of cGMP Phosphodiesterase 5A Improves Diabetic Cardiomyopathy, Volume: 125, Issue: 19, Pages: 2323-2333, DOI: (10.1161/CIRCULATIONAHA.111.063412)

Elisa Giannetta. Circulation. Chronic Inhibition of cGMP Phosphodiesterase 5A Improves Diabetic Cardiomyopathy, Volume: 125, Issue: 19, Pages: 2323-2333, DOI: (10.1161/CIRCULATIONAHA.111.063412)

CARDIACINFLAMMATION

Clinical studies

CARDIAC OXIDATIVE STRESS PRECLINICAL STUDIES

- Sulforaphane
 - Cruciferous vegetables
 - expression of numerous genes encoding antioxidant proteins
 - attenuating cardiac dysfunction, oxidative damage, inflammation, fibrosis and hypertrophy
- N-acetylcysteine
 - normalized the levels of oxidative stress
 - prevented the development of diabetic cardiomyopathy

- Zinc
 - attenuated cardiac fibrosis and dysfunction2
 - prevented the development of diabetic cardiomyopathy
 - prevented diabetes-induced peripheral nerve damage

CARDIAC OXIDATIVE STRESS CLINICAL STUDIES

- Zinc supplementation
- Sulforaphane

DIABETES-INDUCED METABOLISM DISTURBANCES

- Critical mechanisms involved in the development of diabetic cardiomyopathy
 - insulin resistance
 - abnormal glucose metabolism
 - excessive fatty acid oxidation and lipid accumulation in the heart

- Fenofibrate
 - reduced fibrosis and fat (triacylglycerol) accumulation in the heart
 - metformin was more effective than fenofibrate in reducing fat content, however, with no effect on the reduction of fibrosis
- Trientine, a copper-selective chelator
 - improved cardiac function in rats with diabetes with significant left ventricular impairment
- zinc supplementation
- angiotensin-converting enzyme inhibitors (captopril), b-blockers (timolol), and spironolactone.
 - beneficial effects in protecting against myocardial damage in experimental models

SGLT2 inhibitors

- reduced hospitalization for HF in patients with diabetes at high cardiovascular risk
- this effect was independent of the presence of HF at baseline
- In animal studies
 - slowed down atherosclerosis progression, and improved left ventricular negative remodeling and myocardial contractility
- beneficial cardiovascular effects that cannot be attributable to glucose-lowering alone

KEY POINTS

- Diabetic cardiomyopathy occurs in absence of other cardiovascular diseases.
- The main metabolic abnormalities resistance to the metabolic actions of insulin in heart tissue, compensatory hyperinsulinemia, and the progression of hyperglycemia
- Two stages of diabetic cardiomyopathy are described:
 - left ventricular hypertrophy and impaired diastolic function
 - cardiac fibrosis and systolic dysfunction
- No target treatments have been tested in diabetic cardiomyopathy